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ВСТУП 
 
 
 

Період  війни  вимагає швидких  і  рішучих  дій,  підпорядкованих  єдиній 

меті  –  відсічі  збройної  агресії.  Поряд  із  відстоюванням  територіальної 

цілісності,  Україна  стоїть  перед  проблемою  забезпечення  власної  продо‐

вольчої, енергетичної та біологічної безпеки. Зважаючи на це, диверсифікація 

сортаменту  високопродуктивних  олійних  культур  комплексного  використан‐

ня в умовах воєнного стану має вагоме наукове та практичне значення. 

Аналіз  сучасного  стану  досліджень  та  розробок  у  сфері  виробництва 

сільськогосподарської  продукції  в  Україні  та  в  інших  країнах  помірного  клі‐

мату  для  виробництва  збалансованих  харчових  продуктів  і  безвідходної 

утилізації  побічної  продукції  свідчить  про  високий  економічний  потенціал 

подальшого  впровадження  у  сільськогосподарську  практику  як  традиційних 

(ріпак,  суріпиця),  так  і  нових  та  малопоширених  (рижій,  гірчиця  ефіопська 

тощо)  олійних  культур  з  родини  Хрестоцвітих  (Brassicaceae),  застосування 

передових  методів  їхньої  селекції,  а  також  нових  методів  поліпшення 

біотрофних властивостей грунтів.   

Відомо,  що  серед  високоолійних  культур  в  Україні  та  значній  частині 

Європи,  чільне  місце  займає  саме  ріпак,  для  вирощування  якого 

використовується  10‐14%  ріллі.  Однак,  як  свідчить  практика,  традиційне 

рослинництво  в  зоні  помірного  клімату  не  може  повною  мірою  вирішити 

поставлені завдання за рахунок вирощування ріпаку. Зокрема, ріпак є висна‐

жливою для  грунтів  сільськогосподарською культурою. У  країнах  із  вираже‐

ним  континентальним  кліматом,  до  яких  належить  також  Україна,  рівень 

його щорічного виробництва є нестабільним через низький рівень морозо‐ та 

зимостійкості.  До  того  ж,  склад  олії  ріпаку  за  вмістом  ненасичених  жирних 

кислот  –  ненайкращий  варіант  використання  з  метою  харчування.  Тому 

актуальним є впровадження у сільськогосподарське виробництво малопоши‐
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рених,  нетрадиційних  та  нових  високопродуктивних  олійних  рослин,  які  не 

лише  конкурують  з  ріпаком,  але  й  переважають  його  за  важливими  харак‐

теристиками,  будучи  джерелом  якісної  харчової  і  технічної  олії.  До  таких 

перспективних  олійних  культур  можна  віднести  рижій  посівний  (Camelina 

sativa) та гірчицю ефіопську або капусту кільоподібну (Brassica carinata). 

Зокрема, рижій – екологічно пластична, скоростигла рослина з винять‐

ковим  якісним  жирнокислотним  складом  олії,  яка  має  поліфункціональне 

значення як харчова,  технічна та біопаливна культура, що забезпечує високі 

врожаї на маргінальних ґрунтах. Світовим трендом є використання олії рижію 

для  отримання  авіаційного  біопалива.  Гірчиця  ефіопська,  запропонована 

вперше  як  нова  олійна  рослина  в  Україні,  здатна  забезпечити  високу 

урожайність і стійкість є перспективною для виробництва технічних олій для 

військової промисловості, а також авіаційного біопалива.  

Рижій  –  стародавня  культура  харчового  призначення,  яка  характер‐

ризується  винятковими  властивостями  як  екологічно  пластична  рослина. 

Культура  має  можливості  для  вирощування  в  озимих  та  ярих  посівах  як 

найскоростигліша (рання чи ультрорання) з найкоротшим вегетаційним пері‐

одом рослина (65‐75 діб). Рижій посівний завдяки його особливостям жирно‐

кислотного складу, скоростиглості та можливості комбінованого вирощуван‐

ня  з  іншими культурами  (Zanetti  et  al.,  2021; Блюм, 2022; Біологічні…,  2024) 

має значну перспективу для культивування в Україні як поліфункціональна (у 

першу  чергу  харчова),  так  і  біопаливна  культура  (світовим  трендом  є 

використання олії для отримання авіаційного біопалива) (Blume et al., 2022а). 

Як  рослина  невибаглива  до  родючості  грунту,  рижій  можна  вирощувати  на 

низькородючих маргінальних  грунтах  (Очеретна  та Флорова,  2020; Obour  et 

al., 2015; Zanetti et al., 2021; Jiand et al., 2014; Блюм, 2022).  

Однією  з  перспективних  інтродукованих  олійних  культур  в  Україні  є 

гірчиця  ефіопська  (або  капуста  кільоподібна).  Як  нова  для  України  олійна 
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рослина  вона  протягом  багаторічного  періоду  проходить  комплексні 

інтродукційні  дослідження  на  базі  НБС  НАН  України  спільно  з  ДУ  «Інститут 

харчової  біотехнології  і  геноміки  НАН  України».  Рослина  в  умовах  України 

показала  високий  урожайний  потенціал  та  стійкість  і  може  швидко  стати 

перспективною  олійною  культурою  у  разі  використання  відповідних 

молекулярно‐генетичних  та  біотехнологічних  методів  для  створення  цінних 

генотипів і сортів із заданими кількісними та якісними характеристиками олії. 

Зважаючи  на  походження  (гірські  райони  Африки)  та  поширення  (крім 

Африки,  в  Азії,  Південній  Європі,  Австралії,  Північній  Америці,  Канаді)  ця 

культура  в  умовах  України  має  великі  перспективи  для  реалізації  свого 

генетичного  і  біологічного  потенціалу  –  за  стійкістю  до  абіотичних  та 

біотичних стресових факторів і забезпечення високої урожайності (Song et al., 

2021; Roslinsky, 2021; Thakur et al., 2021; Yim et al., 2022). B. carinata також має 

ряд переваг у порівнянні з ріпаком, зокрема має вищий вміст олії, акумулює 

більше  біомаси  під  час  вегетації,  здатна  пригнічувати  ріст  бур’янів  та  має 

більш  розвинену  кореневу  систему, що  дозволяє  використовувати  її  в  тому 

числі  і  для  фіторемедіації  (Marillia  et  al.,  2014).  Наразі  культивування B. 

carinata як нової олійної культури широко вивчається різними дослідниками 

(Seepaul  et  al.,  2021a),  також  розглядається  можливість  створення  озимих 

генотипів зі значно вищою врожайністю (Seepaul et al., 2021a, b). 

Таким  чином,  з  огляду  на  викладене  вище,  важливого  значення 

набуває  розробка  інноваційних  біотехнологій  і  селекційних  технологій 

підвищення  урожайності  насіння  та  вмісту  олії  в  насінні  рослин  Camelina 

sativa  і  Brassica  carinata.  Наразі,  ці  завдання  відповідають  необхідності 

забезпечення  належного  рівня  біологічної  безпеки  у  рослинництві  та 

збереження  родючості  грунтів  при  вирощуванні  зазначених  культур. 

Слід відзначити, що  для  порівняння  з  новими  і малопоширеними  олійними 

культурами  родини  капустяних  –  рижієм  та  гірчицею  ефіопською  –  взято 
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ріпак,  який  є  добре  відомою  і  важливою  в  Україні,  але  виснажливою  для 

грунтів  культурою.  Введення  у  широку  культуру  нових  або  стародавніх, 

малопоширених  чи  забутих  олійних  рослин  з  винятковими  позитивними 

якісними властивостями є надзвичайно важливими завданнями сьогодення. 

Одночасно  розробляються  і  супутні  технології  застосування 

різноманітних  екологічно  безпечних  органічних  сполук  та  природних 

мінералів  як  для  рекультивації  порушених  ґрунтів,  так  і  підвищення 

урожайності  різних  сільськогосподарських  культур,  у  тому  числі  і  для 

підвищення їх олійності (3‐5%). Виснаження та дефіцит природних ресурсів у 

результаті  бойових  дій  і  наростаючий  дефіцит  продовольства  роблять 

актуальним вирішення питання ефективної рекультивації порушених земель 

та  ґрунтів  із  застосуванням  безпечних  для  довкілля  природних 

кремнієвмісних  мінералів.  За  рахунок  поєднання  органічних  матеріалів 

різного  походження  з  кремнієвмісними  мінералами  забезпечується  синтез 

полікремнієвих кислот, присутність яких у  ґрунті призводить до покращення 

органо‐мінерального комплексу, зменшення деградації органічної речовини, 

оптимізації  агрофізичних  показників,  розвитку  агрономічно  корисних 

мікроорганізмів, зниження ґрунтовтоми і токсичності.  

Мета роботи – залучення нових та малопоширених економічно важли‐

вих олійних культур для створення високопродуктивних селекційних ліній  із 

використанням  генетичних  маркерів  та  розробка  технології  підвищення  їх 

продуктивності за рахунок поліпшення біотрофних властивостей грунту.  

Об’єкт  досліджень  –  процес  мобілізації,  інтродукційного  вивчення 

різних  генотипів  і  створення  високопродуктивних  селекційних  ліній  та 

сортозразків рослин. Розробка методів покращення ростових і продуктивних 

показників  рослин  та  поліпшення  біотрофних  властивостей  грунту  за  умов 

використання оригінальних кремнієвмісних добрив.  
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Предмет дослідження – нові та малопоширені олійні культури: гірчиця 

ефіопська  або  капуста  кільоподібна  (Brassica  carinata);  рижій  посівний 

(Camelina sativa); ріпак (Brassica napus) і кремнієвмісні добрива.  

У  роботі  були  використані  такі  методи  досліджень:  загальнонаукові 

(гіпотеза,  експеримент,  спостереження,  аналіз,  синтез)  і  спеціальні  методи 

(польовий  і  лабораторний  –  хімічні,  біохімічні,  мікробіологічні,  агрохімічні). 

На основі сучасних методів інтродукції, акліматизації, молекулярної селекції, 

біохімії  та  біотехнології  рослин  встановлено  особливості  росту,  розвитку  і 

якісні  та  кількісні  показники  рослин,  продуктивний  потенціал,  алелопатичні 

властивості нових олійних культур і створених генотипів. 

Вперше  в  Україні  оцінено  мобілізований  генофонд  економічно‐

важливих олійних рослин (84 зразки) та відібрано генотипи (понад 20) для їх 

маркер‐опосередкованої селекції і виведено 4 високоадаптивні сорти.  

Розроблено  науково‐методичні  засади  та  введено  в  культуру  гірчицю 

ефіопську  і  рижій  озимий  як  перспективні  олійні  рослини  в  Україні. 

Встановлено  морфолого‐біологічні  особливості  та  сезонні  ритми  росту  і 

розвитку  рослин  та  господарсько‐технологічні  властивості  рижію  і  гірчиці 

ефіопської у період технічної стиглості.  

Визначено рівень стійкості рослин та опрацьовано способи підвищення 

функціонування  фотосистеми  ІІ  і  покращення  фізіологічних  процесів  за 

використання генетичного потенціалу рослин та мікродобрив. 

Визначено біохімічний склад  і продуктивний потенціал різних біотипів 

рослин.  Вивчено  вміст  та  вихід  ліпідів  із  насіння  і  проведено  аналіз жирно‐

кислотного  складу  олії.  За  оцінкою  якісного  і  кількісного  складу  ліпідів  та 

інших нутрієнтів фітосировини (56 зразків) визначено напрями використання 

рослин.  Виявлено  закономірності  накопичення  нутрієнтів  у  рослин  залежно 

від різних чинників. Визначено вміст 22‐х макро‐  і мікроелементів у рослин‐



11 

ній  сировині  та  показано  їх  роль  у  ростовому  і  метаболічному  процесах  у 

рослин.  

Встановлено,  що  найвищий  вміст  олії  у  насінні  рижію  становив  39,48 % 

(с. Руно).  Виявлено,  що  за  жирнокислотним  складом  олії  для  різних  форм 

рослин  Camelina  sativa  характерним  є  високий  вміст  ліноленової  (31,4–

35,6 %),  лінолевої  (19,8–24,6 %),  олеїнової  (11,9–18,5 %),  гондоїнової‐11‐

ейкозенової (9,5–12,9 %), пальмітинової (9,5–11,4 %) жирних кислот.  

Виявлено, що олія Brassica carinata характеризується високим вмістом 

ерукової кислоти (36‐45 %), лінолевої (15,00‐18,84 %), ліноленової (11‐13 %) та 

олеїнової  (7,00‐9,57 %).  Визначено  також,  що  фітомаса  (3444‐3994 ккал/кг)  і 

насіння  (5830‐6331 ккал/кг)  олійних  рослин  характеризуються  високою 

енергетичною цінністю.  

Розроблено  сучасні  біо‐  та  фітотехнологічні  методи  поліпшення 

біотрофних  властивостей  ґрунту,  які  сприяють  покращенню  фізіолого‐біохі‐

мічних, ростових процесів, підвищенню продуктивних показників та стійкості 

олійних рослин – за умови використання органо‐мінеральних кремнієвмісних 

добрив.  Встановлено  суттєве  підвищення  вмісту  кремнію,  титану  і  цинку  в 

ґрунті,  збільшилися  показники  брасиностероїдів  та  синтез  хлорофілу  а  у 

листках,  що  позитивно  вплинуло  на  адаптаційну  здатність  організму  і 

зростання  накопичення  вторинних  метаболітів  у  рослинах.  Доведено 

позитивний  вплив  кремнію  на  алелопатичний  режим  прикореневого 

середовища рижію, гірчиці та ріпаку впродовж вегетаційного періоду.  

Опрацьовано  методи  безвідходної  утилізації  побічної  продукції 

(подано  заявки на 2 патенти на  винахід).  Розроблено оригінальні  технології 

виробництва  збалансованих харчових продуктів,  технічних  та фітозасобів на 

основі нових олійних культур. 

Робота складається з вступу, восьми розділів, заключної частини, спис‐

ку літератури та додатків. У першому розділі показано роль економічно важ‐
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ливих олійних культур для покращення продовольчої і біологічної безпеки. У 

другому  розділі  представлено  інформацію  про  Brassica  carinata  A.  Braun 

(гірчиця  ефіопська  або  капуста  кільоподібна)  як  нову  для  України  олійну 

рослину.  У  розділі  3  наведено  умови,  об’єкти  та  методи  проведення 

досліджень.  У  розділі  4  представлено  ростові  особливості  рослин,  а  також 

продуктивність  мобілізованих  і  створених  генотипів  рижію.  Показано 

морфолого‐біологічні  особливості  плодів  та  насіння  і  наведено  біохімічні 

особливості рослин та складу олії різних генотипів Camelina sativa. У розділі 5 

показано  біолого‐морфологічні,  біохімічні  особливості  та  продуктивність 

мобілізованих  і  створених  генотипів  рослин  Brassica  carinata  в  умовах 

інтродукції  у  правобережному Лісостепу України.  В  розділі  6  розкрито роль 

сучасних біолого‐екологічних і алелопатичних методів у поліпшенні ростових 

процесів,  підвищенні  продуктивності  олійних  рослин  (рижію,  гірчиці  та 

ріпаку).  У  розділі  7  представлено  науково‐методичні  засади  поліпшення 

біотрофних властивостей грунту та безвідходної утилізації побічної продукції. 

У розділі 8 показано роль кремнію в механізмах зворотного зв’язку в системі 

ґрунт‐рослина‐ґрунт. 

Ключові  слова  :  олійні  культури,  Camelina  sativa,  Brassica  carinata, 

Brassica  napus,  селекційні  лінії,  продуктивність,  ліпіди,  органо‐мінеральні 

кремнієвмісні добрива, алелопатичний режим, біотрофні властивості ґрунту. 
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РОЗДІЛ 1. 
 

ЕКОНОМІЧНО ВАЖЛИВІ ОЛІЙНІ КУЛЬТУРИ ДЛЯ 
ПОКРАЩЕННЯ ПРОДОВОЛЬЧОЇ І БІОЛОГІЧНОЇ БЕЗПЕКИ 

 
 

 

Сталий  розвиток  людської  цивілізації  можливий  за  вирішення  низки 

найнеобхідніших  глобальних  задач,  серед  яких  зміна  клімату,  збереження 

фіторізноманіття, раціональне використання ресурсів природи та відтворення 

біорізноманіття, забезпечення людства продуктами харчування, лікарськими 

засобами, тваринництво – збалансованими кормами. До цих проблем в Укра‐

їні  додався  воєнний  конфлікт,  який  розв'язала  росія.  Це  призвело  до  суттє‐

вого  ускладнення усіх  проблем екологічного,  економічного,  продовольчого, 

соціального, енергетичного, гуманітарного тощо спрямування. 

Завдання, які спрямовані на вирішення цих та інших актуальних проблем, 

потребують  нагального  вирішення  з  використанням  сучасних  науково‐

інноваційних підходів.  

Війна  у  нашій  державі  похитнула  ринки  продуктів  харчування  та 

енергії  у  світі.  Адже  агропродовольча  система  є  вразливою  до  наслідків 

екологічних потрясінь, війн, мінливості клімату та економічних негативних 

змін.  Дослідники  констатують,  що  у  2023  році  у  світі  з`явився  новий 

мегатренд  –  зростання  закупівлі  продуктів  харчування  не  лише  серед 

містян, але й сільського населення, також відмічено зростання споживання 

продуктів  із  високим  ступенем  обробки.  Це  питання  потребує  вирішення 

шляхом  трансформації  агропродовольчих  систем  в  умовах  урбанізації  та 

забезпечення  можливостей  кожної  людини  мати  доступ  до  здорової  їжі 

(The  State  of  Food  Security  …,  2023).  Світові  негаразди  та  фінансові 

спекуляції  вплинули  на  вартість  і  пропозицію  сільськогосподарської 

продукції: війна в Україні підняла ціни на сільськогосподарську продукцію 
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до  історично  високих  рівнів.  Насамперед,  це  стосується  пшениці  та 

рослинних олій, які необхідні для здорового та збалансованого харчування 

людини з точки зору споживання корисних речовин і калорійності. 

Рослинні  олії  є  ключовим  продуктом  здорового  харчування  та 

важливим  джерелом  жирів:  їхня  дольова  частка  близько  10%  добової 

калорійності харчових продуктів (300 ккал на день на людину), що робить 

їх  другою  за  важливістю  групою  продуктів  після  зернових.  Олія  також  є 

поживним джерелом омега‐3  і омега‐6 жирних кислот  і вітамінів Е  і К. Не 

менш  важливим  є  те,  що  рослинні  олії  –  один  із  головних  продуктів  для 

бідних споживачів, які не можуть перейти на більш дороге вершкове масло 

або  інший  тваринний  жир.  Поряд  із  іншими  товарами,  ціни  на  багато 

рослинних олій були на дуже високому рівні до 22.02.2022. Відтоді ціни на 

рослинну олію зросли в середньому майже на 30% (Glauber et al., 2022). У 

цілому  олійні  культури  забезпечують  покращення  соціально‐економічних 

умов  існування,  що  призводить  до  зниження  рівня  бідності,  підвищення 

якості  освіти  і  покращення  доступу  до  продуктів  харчування  та  систем 

охорони здоров’я (Food Security and Sustainable …, 2022). 

Згідно аналітики Світового банку  з  гострою продовольчою безпекою 

до  2025  року  зіткнуться  943  млн.  людей  і  956  млн.  –  до  2028  року.  У 

реальному  вираженні  інфляція  цін  на  продовольство  у  світі  на  кінець 

поточного  року  перевищила  загальну  інфляцію  на  76%  у  166  країнах 

(станом  на  04.12.2023)  (Food  Security,  2023).  Тож  перед  українським 

суспільством  як  частиною  світової  спільноти  стоять  невідворотні  виклики, 

які  потребують  готовності  до  їх  адекватного  сприйняття  і  оперативного 

науково‐практичного вирішення. 

У  зв’язку  з  цим  має  важливе  значення  інтродукція,  акліматизація, 

адаптація, селекція та біотехнологія нових малопоширених, нетрадиційних, а 

також  стародавніх  і  забутих  господарсько‐цінних  рослин  з  метою 
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забезпечення  різноманітних  потреб  людства  у  цінних  фітоджерелах  для 

виробництва  збалансованих  харчових  продуктів,  лікарських  засобів  тощо. 

Відомо, що після хліба олія є важливим продуктом харчування. Україна має 

передові  позиції  у  Європі  та  світі  з  виробництва  й  експорту  олії  та  олійної 

продукції.  Зважаючи  на  це,  розширення  асортименту  рослинних  олій  за 

рахунок  диверсифікації  вирощуваних  олійних  культур  з  одного  боку  та 

забезпечення  екологічного  балансу  у  землеробстві,  у  контексті  сприяння 

невиснажливого  землекористування  за  рахунок  наявних  головних  олійних 

культур – соняшника та ріпаку – з іншого боку, має важливе значення.  

Наразі,  необхідність  забезпечення  біологічної  безпеки  у  рослинництві 

та  збереження  родючості  ґрунту,  за  рахунок  вирощування  зазначених 

культур, робить проблему надзвичайно актуальною. Тож введення в широку 

культуру нових або стародавніх, малопоширених чи забутих олійних рослин 

із  виключними  позитивними  якісними  властивостями  є  важливою  задачею 

сьогодення.  

До малопоширених перспективних олійних культур відноситься рижій 

посівний  (Camelina sativa (L.)  Crantz)  –  стародавня  культура  людства,  яка 

характеризується  виключними  властивостями  –  як  екологічно  пластична, 

високопродуктивна рослина, перспективна для виробництва  харчової олії, 

шроту для кормових раціонів тварин та/або біопаливної сировини.  

Актуальним завданням є мобілізація  вихідного матеріалу,  створення 

високоадаптивних сортів рослин рижію на основі оригінальної генотипової 

бази, покращення ростових, продуктивних показників, вмісту  та якості олії 

(Рахметов,  2011;  Рахметов  та  ін.,  2014;  Yemets  et  al.,  2014).  Результати 

досліджень  різних  форм  і  сортозразків  C. sativa,  які  мобілізовані  та 

утримуються  в  колекціях  відділу  культурної  флори  Національного 

ботанічного  саду  імені  М.М.  Гришка  НАН  України,  сприяють  на  сьогодні 

вирішенню задач продовольчої та біологічної безпеки України і є науковим 
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підґрунтям  для  розробки  нових  лікарських  препаратів  шляхом  створення 

високопродуктивних  рослин  із  використанням  генетичних  маркерів  та 

підвищення  їхньої  продуктивності  за  рахунок  поліпшення  біотрофних 

властивостей ґрунту. 

Таксономія  роду  Рижій  (Camelina Crantz.). Рід  рижій(Camelina Crantz, 

вперше опубліковано  у  Stirp.  Austr.  Fasc.  1:  18  (1762))  належить до порядку 

Brassicales  родини  Brassicaceae  триби  Camelineae.  Природний  ареал 

знаходиться  у  південній,  східній  та  південно‐східній  частині  Європи, 

Середземномор’ї,  Центральній  Азії  –  до  Пакистану.  У  свій  час  ботаніками 

було  описано  12  видів  цього  роду  (Котов,  1953).  Сучасні  таксономічні 

переліки  наводять  8‐11  видів  роду:  Camelina  alpkoyensis  Yıld.,  Camelina 

alyssum  Thell.,  Camelina  anomala  Boiss.  &  Hausskn.  ex  Boiss.,  Camelina 

barbareifolia DC., Camelina caisir Wall., Camelina hispida Boiss., Camelina incana 

J.Presl  &  C.Presl,  Camelina  laxa  C.A.Mey.,  Camelina  microcarpa  Andrz.  ex  DC., 

Camelina rumelica Velen., Camelina sativa Crantz (WFO, 2023); Camelina alyssum 

(Mill.)  Thell.,  Camelina  anomala  Boiss.  &  Hausskn.,  Camelina  hispida  Boiss., 

Camelina  laxa  C.A.Mey., Camelina microcarpa  Andrz.  ex DC., Camelina neglecta 

J.R.Brock, Mandáková,  Lysak & Al‐Shehbaz, Camelina  rumelica  Velen., Camelina 

sativa  (L.)  Crantz)  (POWO,  2023),  Camelina  alyssum  (Mill.)  Thell.,  Camelina 

alyssum  subsp.  Integerrima  (Čelak.)  Smejkal,  Camelina  anomala  Boiss.  & 

Hausskn., Camelina hispida Boiss., Camelina laxa C.A.Mey., Camelina macrocarpa 

Wierzb.  ex  Reichenb.,  Camelina  microcarpa  Andrz.  ex  DC.,  Camelina  rumelica 

Velen., Camelina rumelica subsp. transcaspica (Fritsch) Hegi, Camelina sativa (L.) 

Crantz (Francis et al., 2009; The Plant List …, 2023). 

Наукова назва походить від грецьких слів «сhamai» – низький і «lіnіоn» 

– льон. Прямий переклад – «низький льон», бо рижій часто росте в посівах 

льону, глушить їх, через що льон виростає низький (Рева, Рева, 1976). 
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Види роду Camelina відносять до пiдтриби Capsellinae Hayek., для яких 

характерним  є  відсутність  серединних  нектарників,  а  бічні мають  придатки; 

судинні  пучки  з  ідіобластами,  волоски  галузисті;  наявні  прямостоячі  при 

основі не мішковидні чашолистики. Пелюстки – з нігтиками, жовті. Зав`язь – 

сидяча,  стовпчик  –  видовжений.  Плід  –  стручечок,  оберненояйцеподібної 

форми, що розкривається двома опуклими стулками з випнутою серединною 

жилкою.  Гнізда  багатонасінні,  насінина  овальна,  з  пласкими  сім`ядолями. 

Рослини опушені простими та галузистими волосками (Котов, 1953). 

Для  природної флори України  визначники  та  «Флори» наводять шість 

видів  (Котов, 1953; Визначник…, 1999),  проте  два  з  них  сучасні  системи  та  бази 

даних (POWO, 2023; Euro+Med 2006+, 2023; WFO, 2023) вказують лише як синоніми 

Camelina  sativa,  який  зараз  сприймається  географічно  і морфологічно  більш 

широко. Однак  зразки  з  території  України,  які  були описані  як окремі  види, 

можуть  слугувати  базою  для  проведення  селекційної  роботи  та  отримання 

нових сортів, гібридів, форм і культиварів, адаптованих в умовах України.  

Морфолого‐біологічна  характеристика  зразків  рослин  Camelina 

поширених в Україні (Котов, 1953; Визначник рослин, 1999). 

1.  Рижій  білоцвітий  або  румелійський  (Camelina  rumelica  Velen., 

Camelina  rumelica  subsp.  rumelica  =  Camelina  albiflora  (Kotschy  ex  Boiss.) 

N.Busch.) 

Однорічник або дворічник в умовах помірної зони. Озима рослина, на 

початку розвитку утворює розетку листків. Стебло 15‐50 см заввишки, просте 

або з небагатьма видовженими пагонами, у верхній частині – голе, у нижній – 

густо  опушене  переважно  довгими  відхиленими  волосками,  зрідка 

трапляються  галузисті  волоски.  Листки  довгасті,  сірі,  густо  вкриті  простими 

волосками. Пелюстки 7‐8 мм  завдовжки, білі  або жовтуваті,  удвоє довші  за 

чашечку. Стручечки грушоподібні, дрібні 5‐8 мм з малоопуклими стулками, зі 

стовпчиком 1,5‐3 мм. Насінина жовтаво‐коричнева, 1,0‐1,5 мм завдовжки та 
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0,4‐0,6 мм  завширшки.  Квітують  рослини  у  квітні‐травні.  Природний  ареал 

даного  виду  знаходиться  у  Південно‐Східній  Європі  до  Центральної  Азії  та 

Північного Пакистану. Поширений  у  Середземномор`ї,  на Балканах,  Кавказі, 

Закавказзі,  у  Туркменістані  (гірські  райони),  Вірменії,  Курдистані,  Ірані, 

Центральній  Азії  та  Паміро‐Алтаї.  В  Україні  досить  поширений,  особливо  у 

південних  регіонах  (на  крайньому  півдні  трапляється  зрідка)  та  в  АР  Крим. 

Росте уздовж доріг як бур`ян на полях (рис. 1. 1). 

   

Рис. 1. 1. Ареал рижію білоцвітого  
https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:279868‐1#distributions 

https://euromed.luomus.fi/euromed_map.php?taxon=292057&size=medium 
 

2.  Рижій  дрібноплідний  (Camelina  microcarpa  Andrz.  Andrz.  ex  DC.). 

2n = 40. У природних умовах рослини даного виду  трапляються на  території 

помірної зони Євразії, півночі Африки (рис. 1. 2). В Україні росте у степах, на 

степових та кам`яних схилах. Поширений по всій території України (в Степу  і 

Лісостепу – звичайно, на Поліссі – рідко), як бур`ян у посівах та уздовж заліз‐

ничних колій. Вид досить поліморфний, тому в межах його виділяють ще низ‐

ку внутрішньовидових таксонів, з яких для природної флори України вказані: 

C.  microcarpa  var.  integerrima  Lindem  –  листки  цілокраї,  квітконіжки 

майже голі; 

C. microcarpa var. denticulatа Lindem – стеблові листки середнього ярусу 

зубчасті, квітконіжки коротковолосисті. 
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Рис. 1. 2. Ареал рижію дрібноплідного 
https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:279860‐1 

https://euromed.luomus.fi/euromed_map.php?taxon=293099&size=medium 
 

  Рижій  дрібноплідний  одно‐  чи  дворічна  рослина.  Озимі  рослини 

перезимовують  у  стані  розетки.  Стебло  20‐60  (80)  см  заввишки,  просте  або 

розгалужене  на  верхівці,  густо  облиствлене,  у  нижній  частині  сизувате, 

оскільки  рясно  опушене  криючими  трихомами  –  короткими  галузистими  та 

простими волосками. Прикореневі листки швидко засихають після запилення 

квіток.  Стеблові  листки  –  ланцетні  або  лінійно‐ланцетні,  сидячі,  при  основі 

стрілоподібні,  (0,8)  1,5‐5,5(7)  см  ×  1‐10(20)  мм,  краї  цілі  або,  рідше,  майже 

дрібнозубчасті,  на  верхівці  загострені,  дещо  опушені.  Суцвіття  –  видовжена 

китиця  з  косо  догори  спрямованими  квітконіжками.  Оцвітина  подвійна: 

чашолистики 2‐3,5 × 0,5‐1 мм; пелюстки блідо‐жовті, 2,5‐3,5 × 1‐2 мм, майже 

вдвічі  довші  за  чашечку.  Тичинкові  нитки  1,5–3,0  мм  завдовжки;  пиляки 

0,5 мм. Стручечки – від грушоподібних до вузьких, довгасті, дрібні, численні, 

3,5‐5(7) × 2‐4(5) мм завширшки, у досить густих гронах, легко розкриваються 

зі стулками, що опуклі лише по середині  і мають широкий плаский край, на 

верхівці  –  загострені.  Насіння  жовтувато‐коричневого  кольору,  видовжено 

яйцеподібне  1‐1,2(1,5) × 0,5‐0,6  (0,7) мм,  трохи  стиснуте,  поверхня  дрібно‐

горбкувата. Квітує протягом травня‐серпня.  

У насінні міститься 23‐36 % олії, йодне число 146,4. Олія придатна для 

виготовлення лаків та фарб. 
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3.  Рижій  дикий  або  лісовий  (Camelina  sуlvestris  Wallr.  –  наразі 

наводиться  як  синонім  C.  microcarpa).  В  окремих  наукових  публікаціях 

наводиться  як  Camelina  sіlvestris  L., що  очевидно  є  помилкою  у  назві  виду 

(Павленко та ін., 2012). 

Природний ареал охоплює Південно‐Східну Європу до Центральної  та 

Північної  Азії.  В  Україні  росте  на  більшій  частині  України,  переважно  в 

степовій  зоні,  окрім  Закарпаття,  Карпат,  Полісся  і  АР  Крим,  по  степових 

схилах, як бур`ян на полях, уздовж доріг.   

Рижій  дикий  –  однорічник  або  дворічник.  Озима  рослина  на  початку 

свого розвитку утворює прикореневу розетку. Має сіро‐зелене забарвлення. 

Стебло  20‐60 см  заввишки,  просте  або  знизу  розгалужене,  цупке,  вкрите  

простими, довгими, відстовбурченими та помірно розгалуженими короткими 

волосками. Прикореневі листки довгасті або довгастооберненояйцеподібні, з 

черешком.  Стеблові  листки  численні,  ланцетні,  сидячі,  в  основі  – 

стрілоподібні  з видовженими вушками. Чашолистики 2,0‐2,5 мм завдовжки, 

видовжено‐ланцетні.  Пелюстки  –  ланцетні,  вузькі,  білувато‐жовтуваті,  3‐

4 (5) мм  завдовжки.  Плоди  –  у  пухкому  гроні,  короткогрушоподібні  або 

майже  кулясті  5‐7  (8) мм  завдовжки  та  3,5‐4,5  (5) мм  завширшки.  Стулки 

стручечків – грубі з широким пласким краєм, по центру мають тонке ребро. 

Плодоніжки  5‐10  (15) мм  завдовжки,  відстовбурчені  або  майже 

горизонтально  відхилені.  Стовпчик  1,5‐2,0 мм  завдовжки.  Насіння  червоно‐

коричневе  1,2‐1,5 мм  завдовжки.  Стулки  плоду  розтріскуються  важче,  ніж  у 

рижію дрібноплідного. Квітують рослин протягом травня‐липня.  

Відрізняється  від  типового  C. microcarpа  більшими  коротко‐

грушоподібними,  майже  округлими  5‐7 мм  завдовжки  та  3,5‐4,5 мм 

завширшки  стручечками  з  грубими  потовщеними  плодоніжками  5‐10 мм, 

рідкими китицями, а також характером опушення стебел. 
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4.  Рижій  лляний,  льоновий  чи  бурачковий  (Camelina  alyssum  Thell. 

=Myagrum  alyssum Mill., C.  linicola Schim. et Spenn.). Природне поширення – 

від Європи до Кавказу. Трапляється скрізь, де вирощують льон: Скандинавія, 

Середня Європа, головним чином у не Чорноземній смузі (рис. 1. 3). 

 
Рис. 1. 3. Ареали рижію лляного 

https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:279832‐
1#childrenhttps://euromed.luomus.fi/euromed_map.php?taxon=293854&size=medium 

 
В Україні рослини даного виду трапляються зрідка як рудеральні у по‐

сівах льону переважно на Поліссі й у Лісостепу. Описані різновиди та підвид: 

C. alyssumvar. integrifolia Wallr. – листки цілокраї; 

C. alyssumvar. dentata Wallr. – листки зубчасті; 

C.  alyssumsubsp.  sublinicola  Zing.  –  являє  собою  перехідну  форму  між 

рижієм голим та лляним. Розміром стручечків та насіння рослини близькі до 

C. alyssum, а опушенням – до С. glabrata; 

C. alyssumvar. caucasica – поширена на Кавказі; 

C.  alyssum var.  crepitans  Jarmolenko  –  стручечки  горизонтально 

відхилені,  розкриваються  на  самому  початку  достигання,  пристосована  до 

посівів льону низького (кудряша). 

Рослина  здебільшого  не  опушена,  іноді  вкрита  дуже  дрібними 

галузистими волосками, жовто‐зелена. Яра. Стебло 30‐80 (100) см заввишки, 

тонке,  майже  не  розгалужене,  листки  лінійно‐ланцетні,  нечисленні,  ніжні. 

Квітки в рідких, коротких гронах на квітконіжках 7‐13 мм завдовжки, більших 
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як  у  С. glabrata.  Чашолистики  довгастоеліптичні  3‐4  мм  завдовжки  і  5 мм 

завширшки. Пелюстки довгастоклиноподібні, мають  заокруглену верхівку 5‐

6 мм  завдовжки  і  2 мм  завширшки,  блідо‐жовті  чи  жовтуваті.  Стручечки  9‐

13 мм  завдовжки  та  5‐7 мм  завширшки,  кулясто‐грушоподібні  чи 

округлояйцеподібні, з притупленою верхівкою, дуже опуклими, тонкими, на 

початку  розвитку  –  м'якими  стулками,  що  легко  здавлюються,  на  дуже 

відхилених,  а  при  ніжних  плодах  навіть  повислих  плодоніжках.  Стовпчик 

1,5 мм завдовжки, насінина довгастояйцеподібна близько 2,5 мм завдовжки і 

1,4 мм завширшки, дещо сплюснута, з виразно виступаючим корінцем, який 

прилягає  до  середини  однієї  з  сім'ядоль,  з  поверхні  дрібногорбкувата, 

жовтувато‐ або червонувато‐бура. Однорічник. Квітує у червні‐серпні.  

Насіння  р.  лляного  містить  41‐36 %  олії,  йодне  число  –  142,9,  число 

омилення – 188,1, число Генера – 94‐59 і рефракція при 40° – 66,6.  

Спроба ввести даний вид рослин у культуру поки що не мала успіху, але 

цілком можлива у північних областях.  

5.  Рижій  посівний  (Camelina  sativa  Crantz).  Поліморфний  вид, 

природний ареал якого простягається від Південно‐Східної та Східної Європи 

до Далекого Сходу (рис. 1. 4).  

Рис. 1. 4. Ареали рижію посівного 
https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:279870‐1#distributions 

https://euromed.luomus.fi/euromed_map.php?taxon=293863&size=medium 
 



23 

Однорічна  трав`яна  рослина  заввишки  90‐100 см,  може  мати  голе  чи 

опушене стебло з різним ступенем галуження. Листки на коротких черешках 

або  сидячі,  дрібні,  ланцетної  форми,  цілокраї,  або  зубчаті.  Суцвіття  типу 

китиця  утворене  дрібними  квітками,  які  мають  жовтий  (від  насиченого  до 

блідого)  колір  оцвітини.  Насіння  помаранчевого,  червоно‐коричневого 

кольору  формується  у  плодах  типу  стручечок.  Плоди  мають  обернено‐

яйцеподібну форму  (Корнієвський та  ін., 2017). Відрізняється від попередніх 

видів більшими стручечками 6‐12 мм із сильно опуклими стулками.  

Даному  виду  притаманні  понад  30  синонімічних  наукових  назв,  під 

якими і досі може траплятися інформація в літературних джерелах щодо цієї 

рослини. З народних назв у світі достатньо поширені: несправжній льон (false 

flax), золото насолоди (gold of pleasure), німецький кунжут (German sesame), 

сибірська  олія  (Siberian  oilseed).  В  Україні  дану  рослину  називають  рижій, 

ллянка,  рижик,  низький  льон,  суріпиця,  трава  рудої  (Camelina  Oil  …;  Рижій 

сійний…; Рижій (насіння) …). 

В України були описані як окремі таксони рижій голий і р. озимий або 

волосистий, які трапляються на даній території. 

Рижій голий (Camelina glabrata (DC.) Fritsch = C. sativa (L.) Crantz).  

Однорічні  рослини.  Стебла  30‐80  см  заввишки,  прямі,  злегка  опушені 

короткими галузистими волосками (з домішкою простих, особливо у верхній 

частині)  або  майже  голі.  Листки  сидячі,  ланцетні,  гострі,  при  основі  стріло‐

подібні, цілокраї або невиразно зубчасті. Квітки – в коротких та видовжених 

гронах,  на  досить  довгих  12‐20 мм  завдовжки  квітконіжках,  чашолистики 

довгасті,  тупі,  2,5‐3  мм  завдовжки  та  1  мм  завширшки.  Пелюстки  клинопо‐

дібнодовгасті,  на  верхівці  заокруглені  4‐5  мм  завдовжки,  яскраво‐жовті. 

Стручечки оберненояйцеподібні з круглою верхівкою, з дуже опуклими тов‐

стими стулками 7‐9 мм завдовжки, на косу догори спрямованих квітконіжках, 

стовпчик 1,5‐2 мм завдовжки. Насінина видовженояйцеподібна близько 2 мм 
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завдовжки  і 1 мм завширшки, дрібногорбкувата, жовтувато‐бура. Квітування 

протягом червня‐серпня. 

Рижій  голий  вирощують  на  полях,  також  трапляється  як  бур'ян, 

головним чином у Лісостепу і Степу, зрідка на Поліссі. 

Загальне  поширення:  Скандинавія,  Середня  Європа,  Північна  Африка, 

Північна Америка. 

У  насінні  міститься  27,4‐49,0 %  жирної  олії,  яка  при  холодному 

пресуванні  –  золотисто‐жовтого  кольору,  а  при  гарячому  пресуванні  – 

зеленувато‐коричнева  або  коричнево‐жовта.  Олія  має  специфічний  гострий 

часниковий  запах  і  смак,  що  залежить,  за  деякими  даними,  від  домішки 

насіння  талабану.  Гіркота  властива  лише  свіжій  олії  і  з  часом  зникає.  Олія 

належить  до  мало  висихаючих.  При  15°С  олія  сильно  гусне,  при  18‐19°С 

застигає в масу подібну до вершкового масла. Олія складається переважно з 

гліцеридів  пальмітинової  та  олеїнової  кислот  і  одного  ізомера  лінолевої 

кислоти. Придатна для їжі, виготовлення оліфи та миловаріння.  

У  XX  ст.  рижій  голий  вирощували  в  культурі  до  північної  межі 

Чорнозему (в Україні та деяких районах північної Європи). 

Рижій  озимий  або  волосистий  (С.  pilosa  (DC.)  Zinger,  С.  sativa  subsp. 

pilosa (DC.) Zinger). Рослина опушена рясними відстовбурченими простими та 

дрібними  галузистими  волосками.  Стебла  –  товсті,  грубі,  галузисті,  прямо‐

стоячі,  30‐100 см  з  великою кількістю щільно розміщених листків. Пелюстки 

золотисто‐жовті  близько  5  мм.  Грона  –  при  плодах  –  з  нечисленними 

стручечками.  Стручечки  7‐12  мм  завдовжки,  4,5‐6 мм  завширшки,  бага‐

точисельні,  зближені,  видовжено‐грушоподібні,  майже  овальні,  з  опуклими 

здутими,  грубими,  темнуватими  стулками,  вузьким  плескуватим  краєм. 

Стовпчик  у  4  рази  коротший  за  стручечок. Насінина  – довгастояйцеподібна, 

1,2‐1,8 мм  завдовжки  і  близько  1 мм  завширшки,  дрібногорбкувата,  жовто‐

коричнева. Квітування спостерігається протягом квітня‐травня (червня). 
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Рослини даного виду поширені практично по всій Європі та на Кавказі. 

В  Україні  трапляється  всюди,  крім  Полісся  і  полинового  Степу.  На  півдні 

країни  –  рідше.  Вирощують  на  полях,  трапляється  як  бур`ян  на  узбіччях,  на 

покладах корисних копалин. 

Насіння містить  25‐36 %  олії,  придатної  для  їжі,  виготовлення фарб  та 

мила.  Макуха  містить  багато  фосфатної  кислоти,  тож  її  можна 

використовувати як добриво. Зелена маса придатна на корм для овець.  

Таким  чином,  на  території  Україні,  згідно  сучасних  таксономічних 

переліків,  у  природній  флорі  трапляється  5  видів  рижію:  Camelina  rumelica, 

C. microcarpa,  C. sуlvestris,  C. sativa,  C. alyssum.  Зважаючи  на  їхню 

морфологічну  внутрішньовидову  неоднорідність  статус  окремих,  раніше 

описаних  видів  потребує  уточнення  –  шляхом  вивчення  морфологічних 

особливостей таксонів у культурі.  

Історія  культури  рижію  посівного  (Camelina  sativa Crantz),  біохімічна 

складова та напрями практичного використання у світовій практиці. Рижій 

посівний є  стародавньою важливою олійною культурою. Олію отримують  із 

насіння. Відповідно до результатів археологічних розкопок встановлено, що 

C. sativa відома ще в епоху бронзи та в епоху заліза, і була – разом із льоном 

та  зерновими  –  визначальним  інгредієнтом  у  харчуванні  людини.  Насіння  і 

стручечки  були  знайдені  під  час  археологічних  розкопок  у  Скандинавії  та 

віднесені  до  бронзового  віку  (1800  р.  до  н.  е.)  (Berti et al.,  2016).  Це 

підтверджує думку, що C. sativa як культурна рослина потрапила до південної 

та центральної Скандинавії і Фінляндії саме у бронзову епоху. Вважається, що 

рижій вирощується як культурна олійна рослина з 4000 року до н.е. Відомо 

про вирощування C. sativa у регіоні долини Рейну в Німеччині – ще у 600 році 

до  н.е.  У  середні  віки  C.  sativa  вирощували  спорадично.  Широко  відома  з 

XVI ст. як культурна рослина також у районах Середземномор'я  і в Середній 

Європі. Практикували посіви рижію також у Середній Азії (Рева, Рева, 1976). У 
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Північній та Східній Європі (Франція, Бельгія, на Балканах) як олійну культуру 

вирощували та споживали до 1930‐40‐х років, коли на заміну прийшли більш 

доступні високоврожайні культури, зокрема ріпак та соняшник. До прикладу, 

попит на олію C.  sativa  в  часи  індустріальної  епохи настільки  упав  у Швеції, 

що  до  1929  року  її  виробництво  було  повністю  припинено.  Наразі  C.  sativa 

культивується  широко  в  Канаді  та  США,  спорадично  –  на  півночі  та  сході 

Європи,  в  Ірландії,  Фінляндії,  Німеччині,  Австрії,  Україні,  Польщі,  Словенії, 

Італії, а також у Китаї (Gillespie et al.; Russo, 2011‐12; Jarour, 2019; Government 

of …; Piravi‐vanak et al., 2022; Riaz et al., 2022; Apтюх, 2018; Блюм, 2022).   

В  харчовий  раціон  давніх  слов`ян  рижій  входив  традиційно  (Apтюх, 

2018). В широку культуру на теренах України був введений у другій половині 

XІX  ст.,  до  того  часу  його  розглядали  переважно  як  засмічувач  у  посівах 

(Мельничук  та  ін.,  2012).  На  початку  XX  ст.  рижій  успішно  вирощувався  на 

територіях  сучасних  Полтавської,  Чернігівської,  Київської,  Херсонської 

областей (Рева, Рева 1976). В Україні рижій залишався традиційною олійною 

культурою до середини XX сторіччя (Блюм, 2022). 

Щодо походження р. посівного, то вважається, що це охоплює регіон 

Північної  Європи  та  Південно‐Східної  Азії.  Територію  України  на  сьогодні 

визначають  як  осередок  генетичного  різноманіття  та  імовірного  центру 

походження  C. sativa  (Glamkhar  et  al.,  2010),  адже  посилений  поліморфізм 

окремих органів у зразках C. sativa з цього регіону вказує на значний ступінь 

генетичної  варіації  (Riaz  et  al.,  2022). Це  –  на  тлі  всього  іншого обмеженого 

генетичного  різноманіття,  хоча  сучасна  зародкова  плазма  містить  достатню 

фенотипову різноманітність для забезпечення агрономічного прогресу (Zubr, 

2003).  Доведено,  що  врожайність  насіння  пов`язана  з  генотипом  рослини 

(Gehringer at al., 2006), а кількісний вміст олії у насінні є сильною спадковою 

ознакою (Vollmann et al., 1996).  
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Філогенія C.  sativa  результативно  досліджена  в  останнє  десятиліття.  У 

2014 році канадські вчені провели секвенування геному C. sativa. В результаті 

проведених  досліджень  вдалося  встановити,  що  геном  є  гексаплоїдним, 

складається з трьох різних субгеномів, що робить його схожим за структурою 

з геномами ріпаку та пшениці. Субгеноми об`єднані через гібридизацію між 

невідомими  батьківськими  видами.  Пізніше  вчені  Teresi  Mandakova,  Milan 

Pouch  і Martin  Lysak  з  дослідницької  групи Martin  Lysak  із  Central  European 

Institute  of  Technology,  Masaryk  University  (Брно,  Чехія)  розшифрували  і 

встановили найближчих родичів C. sativa настільки глибоко, як до цього ніхто 

не  робив.  Унікальні  результати  їхнього дослідження  опубліковані  в журналі 

«Plant  Cell»  (2019  р.)  та  у  розділі  журналу  «In  Brief».  Ученим  вдалося 

реконструювати батьківські геноми C. sativa  і прослідкувати історію еволюції 

гексаплоїдного  геному,  встановити механізми,  які  відповідають  за  нинішню 

форму геномів. Встановлено, що предковий і диплоїдний геном C. sativa були 

сформовані в результаті хромотрипсису, який украй рідко трапляється серед 

рослин  (Jarour,  2019).  Хромотрипсис  як  явище  досліджений  Philip  Stephens 

разом із колегами та запроваджений як поняття і науковий термін у 2011 році 

(Stephens et al., 2011).  

Унікальність відкриття чеських вчених дозволяє селекціонерам удоско‐

налити  цю  давню  і  надзвичайно  економічно  важливу  сільськогосподарську 

культуру. Адже на сьогодні селекція даної культури утруднена через низьке 

генетичне  різноманіття,  переважаюче  самозапилення  та  втрату  попередніх 

стійких форм і сортів. 

На  сьогодні  рижій  є  популярною високоврожайною олійною  культу‐

рою  в  усьому  світі,  оскільки  олія  має  як  харчове,  так  і  промислове  засто‐

сування. Рижій має багато позитивних якостей, які роблять його унікальним 

серед олійних культур, що є основною причиною, чому він викликає великий 

інтерес  серед  аграріїв.  Важливою  ознакою  є  хороші  адаптивні  якості  куль‐



28 

тури:  C.  sativa  добре  пристосовується  до  різних  умов  навколишнього  сере‐

довища,  невибагливий  до  ґрунту  і  стійкий  до  несприятливих  кліматичних 

умов та шкідників (зокрема, у порівнянні з ріпаком і гірчицею). Незважаючи 

на  те,  що  врожайність  насіння  і  вміст  олії  сильно  змінюються  залежно  від 

умов  вирощування,  ці  показники  перевершують  ріпак  у  випробуваннях  за 

ідентичних  умов  посухи,  що  за  сучасних  умов  змін  клімату  є  надзвичайно 

важливим.  Це  у  поєднанні  з  відносно  низькими  витратами  робить C.  sativa 

ідеальною культурою для  використання на менш продуктивних  землях  та  в 

районах  без  достатньої  кількості  опадів  для  підтримки  інших  культур.  При 

виробництві  у  таких  умовах  C.  sativa  не  витіснить  культури,  які  використо‐

вуються для виробництва продуктів харчування, і позитивно вирішить диску‐

сію про їжу як паливо, яка часто стає на заваді використанню рослинної олії 

для виробництва палива.  

Окрім  того,  Camelina  забезпечує  високоякісні  корми  з  достатнім 

вмістом залишкових ліпідів (5–10%), які мають білковий профіль, подібний до 

соєвого  борошна.  Це  робить  шрот  Camelina  ідеальним  для  додавання  до 

раціонів  домашньої  птиці  та  іншої  худоби  (Murphy,  2016).  Трава,  плоди  і 

насіння рижію також можуть бути цінним джерелом флавоноїдів (Павленко и 

др., 2012). Рижій вирощують на Поліссі та у Північному Лісостепу (Мельничук 

та  ін.,  2012),  головним  чином,  для  отримання  олії  заради  освітлення, 

фарбування  і  харчових  потреб.  Сучасне  виробництво  рижієву  олію 

використовує  як  для  парфумерних  потреб,  так  і  в  машинобудуванні.  Існує 

також перспектива використання рижію для переробки його на біодизель.  

З  відновленням  інтересу  до  C.  sativa  на  початку  2000‐х  років  цю 

рослину  розглядали  як  джерело  сировини  для  використання  лише  в 

біодизельній  та  косметичній  галузях.  Проте,  в  останні  роки  пріоритетною 

галуззю  споживання  C.  sativa  стала  харчова  промисловість.  Такий  інтерес 

викликаний насамперед компонентним складом олії, яка міститься у насінні 
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рослин,  та  висока його  олійність. На  сьогодні  ці  ознаки  вирізняють C. sativa 

серед  інших  олійних  культур  і  надають  їй  переваги  у  вирощуванні  та 

використанні.  Вміст  олії  у  насінні  коливається  у  межах  38‐43 %.  Олія  має 

золотаво‐рудий  колір,  їй  притаманний  легкий  горіховий  аромат  і  гірчичний 

післясмак. Вона характеризується багатим профілем поліненасичених жирних 

кислот,  а  макуха,  яка  залишається  після  екстракції  олії,  теж  багата  на 

високоцінні поживні сполуки (Matteo et al., 2023).  

Насіння  рижію  містить  біологічно  цінні  поліненасичені  жирні  олії,  до 

складу  яких  входять  органічні  кислоти,  вітаміни  групи  А,  В,  Е,  К,  макро‐  та 

мікроелементи (Насіння рижію …, 2012; Рижій посівний …, 2018; Користь на‐

сіння …,  2020).  Насіння містить  від  25  до  50%  висихаючої  олії  (йодне  число 

132–153), 28 % білка. Протягом століть цінний жирно‐кислотний склад насін‐

ня C. sativa  сприяв його  використанню у народній медицині. Насіння рижію 

має антиоксидантні властивості, регулює обмін речовин організму, підвищує 

імунітет. Відвар насіння допомагає регулювати рівень цукру в крові та полег‐

шує перебіг цукрового діабету, а також покращує загальний стан організму.  

Олія  містить  40%  α‐ліноленової  кислоти  (18:3n‐6)  омега‐3  жирної 

кислоти, яка має важливе значення у раціоні людини. Високий вміст ненаси‐

чених жирних кислот (близько 90%) робить олію рижію швидковисихаючою, 

тому  її  можна  використовувати  для  виготовлення  полімерів,  лаків,  фарб, 

косметики  і  дерматологічних  засобів.  Загалом  олія  рижію  завдяки  своєму 

складу має багатогранне використання у різних галузях (Guendouz et al., 2015; 

Культура рижій …, 2021; Рахметов та ін.., 2021; Guendouz et al., 2022). 

Понад 90% олії C. sativa складають ненасичені жирні кислоти, 64% полі‐

ненасичені, 30% мононенасичені і 6% – насичені жирні кислоти. Домінантою 

серед ненасичених жирних кислот є α‐ліноленова кислота (18:3n‐3) – 30‐40%, 

лінолева кислота (18:2n‐6) – 15‐25%, олеїнова кислота – 15%, ейкозенова кис‐

лота  –  15 %.  Співвідношення  α‐ліноленової  кислоти  і  лінолевої  кислоти  – 
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40 %:15 %  додає  унікальності  олії  C.  sativa,  на  противагу  іншим  звичайним 

рослинним оліям, якими є соняшникова, ріпакова, оливкова, соєва. В олії та‐

кож наявна гондоєва кислота, що надає особливості C.  sativa, оскільки роль 

цієї кислоти в організмі людини поки невідома. Вміст білку в насінні складає 

27‐32 %.  Вміст  токоферолу  –  близько  700  мг/кг,  вітаміну  Е  (γ‐токоферол)  – 

близько  100 мг/100г.  Токоферол  наряду  з  іншими  антиоксидантами  визначає 

стійкість  олії  до  окислення  та  згіркнення.  Олія  C. sativa  вважається  більш 

стійкою  за  перекисним  числом,  ніж  соняшникова,  кукурудзяна,  кунжутна 

(Gillespie et al. …). Макуха, яка залишається після відтиску олії, теж багата білком 

і незамінними n‐3 і n‐6 жирними кислотами (Ibrahim, El Habbasha, 2015).  

Олія  рижію має  унікальні  лікувальні  властивості,  обумовлені  хімічним 

складом:  бактерицидні,  протипухлинні,  ранозагоювальні,  протизапальні  та 

протиглисні. Наявність омега‐3  і омега‐6 кислот дозволяє очистити організм 

від  солей,  токсинів,  радіонуклідів,  важких  металів.  У  народній  медицині 

рижієву олію використовують для профілактики утворення каменів у нирках, 

при  низькому  гемоглобіні,  для  стабілізації  кров’яного  тиску,  нормалізації 

рівня  гормонів,  холециститі,  цирозі  печінки,  гепатитах,  при  жовчнокам’яній 

хворобі  та  гінекологічних  захворюваннях.  Олія  рижію  незамінна  в  лікуванні 

багатьох  дерматологічних  проблем:  псоріазу,  нейродерміту,  діатезу, 

кропив’янці та ін. (Рижій посівний …, 2018). 

Олія  здатна покращувати  співвідношення n‐6/n‐3 жирних кислот у  їжі. 

Альфа‐ліноленова кислота (18:3n‐3) служить субстратом для ейкозапентаєно‐

вої  кислоти,  докозагексаєнової  кислоти  і  гормонів,  які  виконують  важливі 

функції  в  організмі  людини,  зокрема для  підтримки  імунітету.  Надзвичайно 

важливим  для  немовлят  і  дітей  є  збагачення  їжі  α‐ліноленовою  кислотою. 

Включення  олії  рижію  в  дитячий  раціон  видається  перспективним  заходом 

зміцнення  здоров'я.  Оздоровчий  потенціал  олії  рижію  завдяки  високому 

вмісту  α‐ліноленової  кислоти,  токоферолів  та  інших  антиоксидантів  робить 
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олію  рижію  дуже  привабливою  з  харчової  точки  зору  (Steinke  et  al.,  2000; 

Deng et al., 2001; Zubr, Matthaus, 2002; Ciarescu et al., 2007; Cais‐Sokolinska et al., 2011; 

Faten et al., 2015). Також олія знижує рівень холестерину завдяки синергічній 

дії α‐ліноленової кислоти і антиоксидантів (Ibrahim, El Habbasha, 2015). 

Наявність  омега‐3  жирних  кислот  ставить  в  один  ряд  олію  C.  sativa  з 

оліями  тваринного  походження  –  з  морської  риби  як  класичного  джерела 

даних  жирних  кислот.  Проте,  так  званий  «риб`ячий  жир»  далеко  не  всім 

смакує та імпонує за ароматом, а також має складніші виробничі моменти – 

добування,  переробку,  зберігання,  тому  C.  sativa  розглядається  як  нове 

джерело  омега‐3  олій  (Belavneh  et  al.,  2018).  Олія  і  макуха  є  потенційними 

замінниками як «риб`ячого жиру», так і «риб`ячого борошна», які використо‐

вуються  у  кормах  для  аквакультури. Макуха  містить  значний  рівень  сирого 

білку – 38%, до складу якого входять метіонін і фенілаланін у значних кількос‐

тях (Hixson, Parrish, 2014). Зважаючи на суворий контроль встановлених квот 

по  вилову  риби  –  Total  Allowable  Catch  (TAS),  перспективи  збільшення 

виробництва «риб`ячого жиру» дуже обмежені. Тому C. sativa виступає в ролі 

альтернативної сировини (Gillespie et al.). 

На  сьогодні  є  харчове  і  нехарчове  використання олії C.  sativa. Олію,  а 

також макуху (шрот), розглядають як інгредієнт для функціональних харчових 

продуктів, додають до рецептур кормів для тварин, використовують у косме‐

тологічній  та  лікувальній  продукції,  а  також  для  біопалива  й  агрохімікатів. 

Наразі  є  заклики  до  збільшення  дослідницьких  робіт  саме  з  питання 

використання олії C. sativa в продуктах, зокрема функціональних харчових та 

нутрицевтиках, у косметиці і фармації (Mondor, Hernandez‐Alvarez, 2021). 

У  липні  2008  році  Комісія  ЄС  прийняла  постанову  –  EU  Commission 

issued a directive,  яка дозволила використання C.  sativa  та  її  похідних у  кор‐

мах. Попередньо макуха  (Camelina sativa  cake  (CSC)) як кормова добавка не 

була схвалена у ЄС. Регламентовано, що кількість загальних глюкозинолатів у 
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кормах  не  становить  загрози  для  тварин  і  не  є  загрозою  для  здоров`я  лю‐

дини. Додатково у вересні 2008 року Division of Animal Nutrition of  the Food 

and  Drug  Administration  (FDA)  надали  роз`яснення  щодо  обмеженого  вико‐

ристання макухи CS як комерційного кормового інгредієнта (Aronen et al., 2009). 

У 2010 році Міністерством охорони здоров`я Канади ухвалено рішення 

про  використання  нерафінованої  олії  C.  sativa  холодного  віджиму  як 

харчового  інгредієнта  у державі  (Ibrahim,  El Habbasha,  2015).  Вміст  ерукової 

кислоти в олії C. sativa зазвичай нижчий за допустимий максимальний рівень 

–  5 %,  тому  згідно  вимог  регуляторної  постанови  B.09.022  (Канада)  це  дає 

можливість  використання  даної  олії  в  харчових  продуктах  (Justice  Laws  …, 

2022). Метод холодного віджиму забезпечує в кінцевому продукті незначну 

кількість  білка  (˂  300  мг  білка/100г  олії).  Наявність  інгібіторів  трипсину 

незначна  і  не  становить  загрози  у  перетравленні  білків.  Невелика  кількість 

глюкозинолатів,  які  мають  токсичні  властивості  в  результаті  можливого 

перетворення на  ізотіоціанати та  інші сполуки  і негативно діють на функцію 

щитоподібної  залози,  загрози не  становить. Алергічних реакцій  у людей від 

споживання  олії  C.  sativa  не  зафіксовано.  Тобто  токсикологічна  оцінка, 

проведена  канадськими  спеціалістами,  показала  відсутність  перепон  для 

споживання  олії  C.  sativa.  Олія  придатна  до  використання  в  кулінарії  як 

заправка  до  салатів,  а  також  у  спредах  і  маргаринах  (Government  of  …; 

Maršalkienė et al., 2020). 

У 2016 році олія  з насіння C.  sativa  отримала статус  загально визнаної 

безпечності  –  Generally  Recognized  as  Safe  (GRAS)  –  від  управління,  яке 

займається  контролем  продуктів  та  лікарських  препаратів  –  United  States 

Food and Drug Administration (FDA) (GRN642, 2016) (Belavneh et al., 2018). 

Олія  з насіння C.  sativa  завдяки жирно‐кислотному складу є альтерна‐

тивою лляній олії та риб’ячому жиру. Олія рижію має високий вміст омега‐3 

жирних  кислот.  Макуха  –  джерело  вітамінів  В1,  В3,  В5,  вона  домінує  серед 
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вітамінів  В3.  Цікаво,  що  вміст  вітаміну  В1  в  олії  C.  sativa  разюче  вищий 

(18 мкг/г),  ніж  у  льоні  (6 мкг/г)  та  ріпаку  (8  мкг/г);  вміст  В3  (194 мкг/г) 

перевищує ніж удвічі вміст у лляному насінні (91 мкг/г); вміст В5 такий самий 

як  і  в  показника  льону  –  11 мкг/г  і  нижчий,  ніж  у  ріпака  (16  мкг/г).  Також 

макуха  містить  макро‐  та  мікроелементи:  1,0‐1,6%  припадає  на  Ca,  K,  P; 

високий вміст Fe – 329, Mn – 40, Zn – 69 мкг/г (Ibrahim, El Habbasha, 2015). 

Завдяки  тому,  що  олія  має  чудовий  аромат,  смак,  тривалий  період 

зберігання,  витримує  нагрівання  до  245°С,  не  втрачаючи  корисних  власти‐

востей,  на  сьогодні  вона  є  популярним  інгредієнтом  у  кулінарії,  зокрема  у 

палео‐кулінарії  (неандертальській  дієті)  та  веганській.  Наприклад, шведська 

компанія  «Camelina  of  Sweden»  на  початку  зимового  періоду  2015/16  років 

налагодила  випуск  «Camelina  Oil».  Супроводжує  продукцію  всіма 

необхідними  сертифікатами,  здійснює  продаж  через  мережу,  мінімальна 

ємність – 1 кг за майже 25 євро (Scratton …). Підприємство у Канаді «Oliméga» 

пропонує «Signé Caméline» як унікальний продукт, смак якого поєднує нотки 

лісового  горіха,  кунжуту  і  трав  та  рекомендує  до  використання  в  сирому 

вигляді чи у рецептах випічки (Oliméga …). 

Із подрібненого насіння або макухи C. sativa можна отримати борошно, 

яке придатне для використання у хлібопекарській справі. Як  інгредієнт воно 

сприяє  травленню.  Єгипетські  вчені  встановили,  що  борошно  містить  у 

своєму складі 13 % залишків олії, 6 % золи, 12 % сирої клітковини, 30 % сирого 

протеїну, 27 % безазотистих речовин та  ін. Вміст білку складає 30‐35 % сухої 

речовини  і  переважна  частина  –  це  запасні  білки  насіння  (60  і  20 %  від 

загального  білку  в  достиглому  насінні).  Наявні  вуглеводи  включають моно‐, 

ди‐, оліго‐, полісахариди  і  клітковину  (Ibrahim, El Habbasha, 2015). Наявність 

омега‐3 жирних кислот сприяють збагаченню хліба (Gillespie et al. …). З огляду 

на той факт, що функціональне харчування стає все більш популярним у світі, 

асортимент  продуктів  із  фізіологічно  функціональними  інгредієнтами 
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потребує  розширення.  Функціональність  харчових  продуктів  визначається 

біологічними  та  фармакологічними  властивостями  інгредієнтів,  що  входять 

до  їхнього складу. Завдяки цьому вони мають здатність позитивно впливати 

на певні функції організму людини. 

Одним  із  функціональних  продуктів,  досить  різноманітних,  сьогодні  є 

хліб  і  хлібобулочні  вироби.  В  Україні  виробляється  понад  100  найменувань 

різних  сортів  хліба.  Використання  при  їх  виготовленні  рецептурних 

інгредієнтів,  отриманих  із  сировини  рослинного  походження,  збагаченої 

біологічно  активною  речовиною  (БАР),  покращує  кулінарні  якості,  харчову 

цінність  хліба,  забезпечує  його  лікувально‐профілактичну  спрямованість 

(Лебеденко та ін., 2013; Методи аналізу…, 2017).  

Олія  C.  sativa  є  цілком  прийнятною  сировиною  для  виробництва 

косметичної  продукції  –  кремів,  лосьйонів,  бальзамів,  помади,  брускового 

мила  (Sampath,  2009).  Вона  добре  зволожує,  захищає  та  заспокоює  шкіру 

людини,  є  ефективним  засобом  у  боротьбі  з  почервонінням  і  запаленням 

шкіри,  для  покращення  стану  волосся.  Може  використовуватися  як  базова 

олія  для  розведення  натуральних  ефірних  олій,  також  як  додаток  до 

натуральних  солей  для  ванн,  до  мила  та  масажних  олій  (Camelina  oil  …; 

Organic  Camelina  …).  Встановлено,  що  олія  має  підвищену  трансдермальну 

дифузію,  завдяки  чому  може  бути  «транспортним  засобом»  для  олій 

рослинного походження (Савіна та ін., 2021).  

Розширюється  і  набирає  обертів  технічне  використання  C.  sativa.  На 

сьогодні відомо, що авіаційне біопаливо уже використовується на більш ніж 

1500  комерційних  рейсах.  Біопаливо  отримують  шляхом  купажування: 

звичайне  пальне  для  реактивних  двигунів  змішують  із  50 %  біопалива,  яке 

отримане  із C. sativa,  відпрацьованої  рослинної  олії  та  водоростей  (Gillespie 

et  al.  …).  Також  підвищився  інтерес  фермерів  до  рижію  як  до  олійної 

культури, для виробництва біодизеля в США та в інших країнах світу, а також 
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в Україні (Яковлєва‐Носарь та ін., 2015; Шевченко та ін., 2017; Демидась та ін., 

2011; Цикало та ін., 2019).  

Одним з найважливіших напрямків використання рижію є енергетична 

галузь  (Agarwal  et  al.,  2010;  Ciubota‐Rosie  et  al.,  2013;  Dobre  et  al.,  2011; 

Karcauskiene et al., 2014; Frohlich et al., 2005; Krohn et al., 2012; Moser et al., 

2010; Singh et al., 2014). 

Взагалі,  завдяки  компонентному  складу,  олія  C.  sativa  має  широкий 

спектр використання, починаючи з харчових продуктів, косметичних засобів, 

тваринних  кормів,  і  закінчуючи  біопаливом  (Frame  et  al.,  2005;  Russo,  2015; 

Guendouz at al., 2022). 

C. sativa вважається надзвичайно адаптивною культурою. Рослина має 

можливості  для  вирощування  в  озимих  та  ярих  посівах  і  характеризується 

найкоротшим  вегетаційним  періодом.  Як  рослина,  маловибаглива  до 

родючості ґрунту, рижій може вирощуватися на низькородючих маргінальних 

ґрунтах  (Очеретна,  Фролова,  2020;  Рахметов,  2011;  Alberghini  et  al.,  2022). 

Також  для  її  вирощування  придатні  різні  водно‐кліматичні,  ґрунтові  та 

орографічні  умови  –  від  суворих  помірно  бореальних  зон  до  критично 

посушливих  тропічних.  Культура  високосумісна  з  існуючими  методами 

ведення сільського  господарства. C.  sativa має короткий цикл вирощування. 

Вирізняється кращою стійкістю до весняних заморозків та посухи порівняно з 

ріпаком. Має хорошу конкурентну спроможність проти бур`янів. Зазвичай не 

рекомендується  вирощувати  на  одному  місці  частіше,  ніж  один  раз  на  3‐4 

роки.  Затрати  на  вирощування  є  низькими,  оскільки  рослини  потребують 

мало  води,  добрив  та  пестицидів  –  у  порівнянні  з  іншими  олійними 

культурами,  такими  як  соняшник,  соя  чи  ріпак.  C.  sativa  стійка  до  хвороб: 

альтернаріозу,  чорної  ніжки  хрестоцвітих,  окремі  генотипи  виявляють 

стійкість до склеротиніозної гнилі стебла, бурої оперізуючої кореневої гнилі, 

пероноспорозу. Проте рослини C. sativa чутливі до кили, білої іржі та хвороби 
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айстри жовтої. З огляду на позитивні характеристики культури відмічений ріст 

її посівів у Північній Америці та Європі  (Sequin‐Swartz et al., 2009;  Ibrahim, El 

Habbasha, 2015; Piravi‐vanak et al., 2022; Matteo et al., 2023). 

Встановлено,  що  хімічний  склад  і  врожайність  насіння  змінюються 

залежно  від  періоду  вирощування,  генотипу  посівного  матеріалу,  умов 

навколишнього  середовища  (температурний  показник  і  вологість), 

використаних агротехнічних прийомів вирощування (строк сівби, стан ґрунту, 

використання добрив,  гербіцидів,  зрошення  тощо)  (Riaz et  al.,  2022).  Значну 

роль відіграють кліматичні фактори, які впливають на продуктивність C. sativa 

–  кількість  поліненасичених  жирних  кислот,  загальний  вміст  олії  та  білку  в 

насінні.  Виявлено,  що  у  холодному  кліматі  відсоток  виходу  ненасичених 

жирних кислот вищий. Таким чином, можливе вирощування цієї рослини як у 

холодних провінціях – для харчових цілей, так і в тропічних провінціях – для 

промислових цілей (Hunsaker, 2013; Kahrizi. Et al., 2015; Raziei et al. 2018). 

В  Україні  C.  sativa  культивується  переважно  у  північній  частині 

Лівобережного  Лісостепу  та  Поліссі.  Загальна  площа  посівів  складає  5‐

6 тис. га,  що  становить  3%  всіх  олійних  рослин.  Часто  використовують  як 

проміжну  та  післяжнивну  культуру.  Добре  росте  на  всіх  типах  вітчизняних 

ґрунтів,  окрім  важких  глинистих;  витримує  весняні  приморозки,  стійкий  до 

посухи, шкідників і хвороб. Найкращими попередниками вважаються озимі і 

ранні ярі зернові, а також картопля, льон, кукурудза, цукрові буряки, овочі та 

баштанні  культури.  Сіють  як  широкорядним,  так  і  суцільним  способом. 

Середній  урожайність  насіння C. sativa  в  Україні  складає  1,0‐1,5  т/га  (Рижій. 

ТОВ  «Камруд‐Агро»,  електрон.  ресурс).  Наприклад,  урожайність  C. sativa  у 

Канаді в середньому становить 1,2‐1,5  т/га,  (за норми висіву 600 насінин на 

1 м2  показник зростає до 1,59  т/га);  у Німеччині – 1,15‐1,60  т/га;  у Франції – 

2,3‐3,0 т/га (Ibrahim, El Habbasha, 2015). Вважається, що вміст сухої речовини 

та  вміст  олії  у  рослині  переважно  залежать  від  кількості  днів  після  цвітіння 
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(Pollard  et  al.,  2015),  також  це  стосується  і  вмісту  білку  та  олії  в  насінні 

(Rodriguez‐Rodriguez et al., 2013).  

У  літературі  трапляються  відомості  про  сорти  C.  sativa:  Lindo,  Soledo, 

Bavaria,  Ukrainian,  Volynska,  Zarya  Socialisma  (Riaz  et  al.,  2022),  Soheil  (Piravi‐

vanak  et  al.,  2022);  Степовий  1,  Міраж,  Гірський,  Клондайк,  Престиж, 

Славутич, Зевс, Перемога, Євро 12 (Опис та … Вітчизняні сорти., electron. res.). 

У Державному реєстрі сортів рослин України на тепер представлено 8 сортів, 

які рекомендовано для вирощування у різних кліматичних зонах, серед них 2 

сорти (Перемога та Євро‐12) створені у Національному ботанічному саду іме‐

ні  М. М. Гришка  НАН  України  (Державний  реєстр  …,  2025).  Але  сьогодні  є 

велика  потреба  у  цільових  сортах  із  підвищеною  продуктивністю  насіння, 

високим  виходом  олії  та  якісними  характеристиками  жирних  кислот,  що 

визначає основні напрями їх використання.  

Підсумовуючи  результати  літературного  скринінгу,  стає  очевидним 

необхідність  розробки  інноваційних  біотехнологій  підвищення  урожайності 

насіння, вмісту олії та її якісних характеристик у рослин роду Camelina. Наразі 

в Україні рижій відомий із давніх часів, але досі лишається малопоширеною 

культурою. Одним із стримуючих чинників була відсутність високоадаптивних 

продуктивних сортів для різнопланового використання. У  цьому плані в НБС 

імені М.М. Гришка НАН України створено унікальні  за якісним та кількісним 

складом  колекції  корисних  рослин  з  різних  ботаніко‐географічних  регіонів 

світу, які включають понад 2000 таксонів (Колекційний фонд …, 2020). Серед 

цього  колекційного  фонду  генотипова  колекція  Camelina  sativa  нараховує 

близько  35  зразків.  Ця  колекція  є  особливо  цінною  з  погляду  збереження 

різноманітності  рослин  ех  situ,  створення  нових  форм  та  сортів  рослин, 

всебічні  дослідження  біологічних,  екологічних  особливостей  рослин, 

використання  фітосировини  для  виробництва  різних  харчових  продуктів, 

технічних та лікарських фітозасобів.  



38 

Тому актуальним є впровадження у сільськогосподарське виробництво 

нетрадиційних і нових високопродуктивних олійних рослин, здатних не лише 

конкурувати  з  ріпаком,  але  навіть  переважати  його  за  важливими  характе‐

ристиками  –  як  джерела  якісної  харчової  і  технічної  олії.  До  таких  перспек‐

тивних олійних культур відносяться рижій посівний та гірчиця ефіопська.  

Наразі,  ці  завдання  відповідають  і  необхідності  забезпечення 

належного  рівня  біологічної  безпеки  у  рослинництві  та  збереження 

родючості  ґрунтів  за  вирощування  зазначених  культур.  Введення  в  широку 

культуру нових або стародавніх, малопоширених або забутих олійних рослин 

із  виключними  позитивними  якісними  властивостями  є  надзвичайно 

важливою задачею сьогодення. Одночасно  існує велика потреба у розробці 

супутніх  технологій  застосування  різноманітних  екологічно  безпечних 

органічних  сполук  і  природних  мінералів  як  для  рекультивації  порушених 

ґрунтів,  так  і  для  підвищення  урожайності  досліджуваних  культур,  у  тому 

числі – для підвищення їхньої олійності.  
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РОЗДІЛ 2. 

BRASSICA CARINATA A. BRAUN  
(ГІРЧИЦЯ ЕФІОПСЬКА АБО КАПУСТА КІЛЬОПОДІБНА) – НОВА 

ДЛЯ УКРАЇНИ ОЛІЙНА РОСЛИНА 
 

 
 

 
Сьогодні  набули  актуальності  питання  створення  нових  культур  та 

сортів  рослин,  адаптованих  до  мінливих  кліматичних  умов.  Виведення  цих 

рослин  дозволить  вирішити  такі  питання,  як  забезпечення  людства 

збалансованими  продуктами  харчування,  технічними,  енергетичними  та 

лікарськими  засобами,  а  тваринництва  –  високоякісними  кормами.  Тому 

вирішення  цих  завдань,  зокрема  в  Україні,  є  однією  з  основних  складових 

поліпшення  якості  життя  завдяки  задоволенню  базових  потреб  людини,  її 

здоров'я та екологічного добробуту країни. У зв’язку з цим необхідно розро‐

бити нові біологічні заходи, аби агроландшафти не лише забезпечували лю‐

дину потрібною чистою продукцією, але й сприяли регенерації води і повітря, 

підтримці здоров’я населення. Використання нових культур як сировини для 

харчових  продуктів,  лікарських  фітозасобів,  біопалив  та  фітодобрив  має 

важливе екологічне й економічне значення (Біологічні…, 2024).  

Великого  значення  набуває  вивчення  інтродукційних  ресурсів  та 

мобілізація  нових  для  регіону  видів  з  високою  нормою  реакції  до  посухи, 

холоду і морозу, а також як цінних рослин, спроможних забезпечувати висо‐

ку продуктивність та імунність.  

Колекційний  фонд  енергетичних  і  ароматичних  рослин  НБС  імені 

М. М. Гришка НАН України  як науковий об’єкт Національного надбання має 

важливе наукове, практичне, соціальне та просвітницьке значення. Він слугує 

базою  для  відбору  нових  високопродуктивних  культур  і  створення  сортів 

корисних  рослин  для  розширення  різноманіття  біологічних  ресурсів  та 
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покращення  продовольчої,  біологічної  і  енергетичної  безпеки  (Біологічні…, 

2024; Фундаментальні …., 2024). 

Період війни вимагає швидких та рішучих дій, підпорядкованих єдиній 

меті  –  відсічі  збройної  агресії.  Поряд  із  відстоюванням  територіальної 

цілісності,  Україна  стоїть  перед  проблемою  забезпечення  власної 

продовольчої, енергетичної та біологічної безпеки. Відомо, що олія є цінним 

продуктом  харчування,  джерелом  для  виробництва  різних  лікарських 

фітозасобів,  мастильно‐паливних  і  лакофарбових  матеріалів  тощо.  Україна 

традиційно зорієнтована на виробництво та експорт олії та олійної продукції. 

У зв’язку з цим важливе наукове і практичне значення має мобілізація, підбір 

та  введення  в  культуру  нових,  нетрадиційних,  малопоширених 

високопродуктивних  олійних  рослин  з  метою  розширення  сортаменту 

рослинних олій та диверсифікація вирощуваних культур в Україні.   

Зокрема, гірчиця ефіопська – екологічно пластична, високопродуктивна 

рослина  з  винятковим  якісним  жирнокислотним  складом  олії,  яка  має 

поліфункціональне  значення, що  забезпечує  високі  врожаї  на маргінальних 

ґрунтах.  Гірчиця  ефіопська  розглядається  вперше  як  нова  олійна  рослина  в 

Україні,  здатна  забезпечити  високу  урожайність  і  стійкість.  Вона  є 

перспективною  для  виробництва  технічних  олій  для  військової 

промисловості, а також авіаційного біопалива.  

Brassica carinata також має ряд переваг у порівнянні з ріпаком, зокрема 

–  має  вищий  вміст  олії,  акумулює  більше  біомаси  під  час  вегетації,  здатна 

інтенсивніше  пригнічувати  ріст  бур’янів  і  має  більш  розвинену  кореневу 

систему,  що  дозволяє  використовувати  її  в  тому  числі  –  для  фіторемедіації 

(Marillia et al., 2014; Рахметов та ін. 2024). Наразі культивування B. carinata як 

нової олійної культури широко вивчається різними дослідниками (Seepaul et 

al.,  2021a),  в  тому  числі  розглядається  можливість  створення  озимих 

генотипів зі значно вищою врожайністю (Seepaul et al., 2021a, b). 
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Родина  Brassicaceae  є  однією  із  найпоширеніших  груп  рослин, 

представники  якої  здавна  культивуються  і  до  тепер  мають  важливе 

економічне  та  господарське  значення  (Raza et  al.,  2020; Vergun et al.,  2017). 

Серед різноманіття відомих і широковживаних культур цієї родини особливої 

уваги  заслуговує  Brassica  carinata  A.  Braun  як  високопродуктивна  олійна, 

цінна харчова, лікарська, кормова, медоносна культура (Hagos et al., 2024).  

Brassica  carinata  широко  відома  як  абіссинська  капуста,  абіссинська 

гірчиця,  африканська  капуста,  ефіопська  капуста,  ефіопська  гірчиця, 

ефіопський  ріпак,  гірчична  капуста,  гірчиця  коллар,  chou  Éthiopien, 

moutardd'Abyssinie (USDAARS, 2014). 

Brassica  carinata  утворилася  внаслідок  міжвидової  гібридизації  між 

Brassica nigra та Brassica oleracea (Gómez‐Campo, 1999; Warwicketal., 2006). Як 

гібридогенний  вид  геном  включає  батьківські  види.  Brassica  carinata  є 

амфіплоїдним  видом  (BBCC,  2n  =  34;  Prakashetal.,  2011).  Геном  Brassica 

походить від Brassica nigra (BB, 2n = 16), а геном Сarinata– з Brassica oleracea 

(CC,  2n  =  18;  Prakashetal.,  2011).  Трикутник  U  (U  1935)  описує  тісний 

генетичний  зв’язок  між  амфідиплоїдними  видами  B.  carinata,  B.  juncea  та 

B. napus та диплоїдними видами B. nigra, B. rapa та B. oleracea. 

Таксономічне положення рослин Brassica carinata (USDAARS, 2014): 

 Царство: Plantae (рослини) 

      Підцарство: Tracheobinta (судинні рослини) 

         Супервідділ: Spermatophyta (насіннєві рослини) 

           Відділ: Magnoliophyta (квіткові рослини) 

             Клас: Magnoliopsida (дводольні) 

                Підклас: Dilleniidae 

                   Порядок: Capparales 

                        Родина: Brassicaceae 

Триба: Brassiceae 
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Рід: Brassica L.  

                                  Вид: Brassica carinata A. Braun 

Однією  з  найпоширеніших  гіпотез  сьогодення  щодо  батьківщини 

походження виду рослин B.  carinata  є  високогірне плато Ефіопії  та  прилеглі 

частини  Східної  Африки  і  Середземноморського  узбережжя.  (Seepauletal., 

2021).  Підтвердженням  цієї  гіпотези  є  те,  що  батьківські  види,  були  досить 

поширеними  у  вище  згаданих  регіонах  у  період,  коли,  як  вважається  і 

з’явилася B. carinata (Alemayehuetal., 2002). 

Вважається, що вирощування B.  carinata  почалося  в  4‐5  тисячолітті  до 

нашої  ери  у Північно‐Східній Африці на  території  сучасної  Ефіопії,  Судану  та 

Еритреї,  а  згодом  ареал  збільшився  до  прилеглих  регіонів,  таких  як  Східна 

тропічна  Африка  (Кенія,  Танзанія  та  Уганда),  Західна  і  Центральна  тропічна 

Африка  (Камерун  та  Демократична  Республіка  Конго),  Західна  тропічна 

Африка (Кот‐Д’Івуар), Південна тропічна Африка (Мозамбік, Малаві, Замбія та 

Зімбабве),  Південна  Африка  (Ботсвана),  Західна  частина  Індійського  океану 

(Мадагаскар)  та  Південно‐Західна  Азія  (Саудівська  Аравія  та  Ємен) 

(Simmonds, 1979; Warwick et al., 2009; Delesa, 2006). 

Інтерес  до  вирощування  B.  carinataу  світі  в  умовах  недостатнього 

зволоження  зріс  у  середині  1980‐х  років.  Рослина  високо  цінується  як 

потенційна альтернатива існуючим олійним культурам. 

Завдяки  можливостям  використання  сировини  рослин  B.  carinata  в 

різних  перспективних  та  інноваційних  галузях  промисловості  як  культури  з 

низьким  рівнем  непрямих  змін  у  землекористуванні  або  взагалі  без  них, 

спостерігається  зростаюча  тенденція  її  вирощування  у  різних  частинах  світу 

(Campbell et al., 2023; Ambaw et al., 2024).  

Так, B. carinata активно культивується на своїй батьківщині – в країнах 

Африки,  а  саме  у  Ботсвані,  Камеруні,  Кот‐Д’Івуарі,  Мадагаскарі,  Малаві, 

Мозамбіку,  Судані,  Демократичній  Республіці  Конго,  Замбії  та  Зімбабве 
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(Marillia et al., 2014; Tesfaye et al., 2023). Також рослина інтродукована в Азії, 

Індії  та  Пакистані,  де  активно  культивується  (Chauhan  et  al.,  2011;  Lal  et  al., 

2013; Zada et al., 2013). 

На теренах Європи B. carinata теж знайшла своє місце і культивується у 

Великобританії, Греції,  Італії та  Іспанії  (Font et al., 2004; Namatov et al., 2000; 

Cardone et al., 2003; Alcántara et al., 2011) (рис. 2. 1). 

 
Рис. 2. 1. Походження  та поширення рослин Brassica carinata 

У Північній Америці рослини B. carinata активно вирощується в Канаді 

(Саскачеван,  Манітоба,  Альберта)  у  США  (Монтана,  Північна  та  Південна 

Дакота,  Вайомінг,  Небраска,  Канзас,  Оклахома,  Техас,  Луїзіана,  Міссісіпі, 

Алабама,  Джорджія,  Флорида)  (Kumar  et  al.,  2020).  Також  значні 

експериментальні  посіви  рослин  B.  carinata  наявні  на  території  Південної 

Америки – Чилі та Уругвай (Seepaul et al., 2016). 

Також, B. carinata знайшла своє місце і досить активно культивується в 

Австралії (Khangura еt al., 2006). 

Природний ареал – Африка (Саудівська Аравія, Ємен, Ефіопія, Еритрея, 

Кенія, Руанда, Уганда і Танзанія). 

Попри  це,  вирощування  у  великих  обсягах  залишається  переважно 

обмеженим  рідною  Ефіопією  та  сусідніми  країнами.  Традиційно  на  своїй 
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батьківщині  B.  carinata  використовується  як  листовий  овоч,  що  забезпечує 

людський раціон необхідними мікроелементами (Chadha et al., 2006). Молоді 

ніжні  листки  споживають  у  сирому  вигляді,  а  старіші  –  разом  зі  стеблами  – 

відварюють до розм’якання і їдять як капусту. Також в Африці B. carinata іноді 

вирощують як олійну культуру. Олію використовують для приготування їжі, як 

пальне для освітлення та в традиційній медицині (Prakash et al., 2011). 

Загалом  в  інших  частинах  світу  B. carinata  використовується  як 

низьковуглецева  нехарчова  олійна  сировина  для  виробництва  сучасних 

відновлюваних  видів  палива,  шроту  з  високим  вмістом  білку  для  годівлі 

тварин та виготовлення біопродуктів (Licata et al., 2024). Це зумовлено, в тому 

числі,  високою  економічною  ефективністю  такого  використання,  адже  після 

виокремлення  з  рослини  олії  існує  можливість  подальшого  використання 

зеленої  маси  на  інші  потреби,  в  тому  числі  перетворення  її  целюлозної 

біомаси на цінні хімічні продукти, зокрема органічні кислоти. Згідно сучасних 

досліджень  шрот,  що  залишається  після  отримання  олії,  може  бути 

використаним  для  виробництва  пропіонової  кислоти.  Ця  кислота  на 

біологічній  основі  може  слугувати  відновлюваною  сировиною  для 

промислових  хімікатів  і  консервантів,  замінюючи  продукти  на  основі 

викопного палива (Ammar et al., 2021). 

Рослина  має  важливі  агрономічні  особливості,  що  дозволяють 

вирощувати її як озиму культуру у вологих субтропічних регіонах, або як яру 

культуру  –  у  вологому  континентальному  кліматі.  Рослина  B. carinata 

жаростійка, стійка до хвороб та осипання насіння, а також є невибагливою до 

нестачі води, на відміну від інших близьких родичів (Raman et al., 2017).  

Тривалість  дозрівання  культури  становить  від  154  до  165  діб. 

Врожайність насіння у перший рік вирощування рослин є вищою і становить 

від 2,8 тони га до 3,4 тони га. На другий рік вегетації, на повторних посівах, 

урожайність зменшується на 29 % (Seepaul et al., 2021; Kumar et al., 2020). 
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Для  поширення  культури  на  великі  та  менш  сприятливі  території 

необхідно адаптовані сорти, які є морозостійкими, скоростиглими, ефективно 

використовують  поживні  речовини,  мають  високу  врожайність  із  бажаним 

вмістом олії та жирних кислот (Kumar et al., 2020; Mulvaney et al., 2019). 

Так,  дослідження  Mahesh  Bashyal  щодо  накопичення  та  розподілу 

поживних  речовин,  залежно  від  періоду  розвитку  рослин  і  географічної 

широти,  проводилися  на  чотирьох  ділянках  у  Джеї  (штат  Флорида)  та 

Солсбері  (штат  Північна  Кароліна)  протягом  двох  років.  У  ході  досліджень 

були  визначені  показники  біомаси  і  накопичення  поживних  речовин  на 

різних  стадіях  росту.  У  Флориді  для  формування  врожайності  1635 кг/га 

насіння та 10 872 кг/га біомаси необхідно було використовувати   N – 169 кг, 

P –  22  кг,  К  –  160  кг,  S  –  58  кг,  Zn  –  475  г,  B  –  218  г.  У Північній Кароліні  за 

врожайності 2428 кг/га насіння і 9102 кг/га біомаси винос становив N – 178 кг, 

P  –  26  кг,  K  –  87  кг,  S  –  24  кг,  Zn  –  416  г,  B  –  127 г.  Елементи  з  високими 

індексами врожаю включали P, N, S та Mg. Ефективність використання N, P і K 

становила  16,83  та  8  кг  насіння  на  кілограм  спожитих  поживних  речовин 

відповідно.  Отже,  результати  демонструють  тимчасове  накопичення  і  роз‐

поділ поживних речовин у B. carinata. Вони є критично важливими для вдос‐

коналення стратегій управління поживними речовинами (Bashyal еt al., 2023). 

Також  Paul  Cockson  вивчав  вплив  поживних  речовин,  зокрема 

мікроелементів, на ріст та розвиток рослини у різних фазах, а саме: вегетації, 

бутонізації,  квітування  і  плодоношення.  Рослини  вирощували  за  різних 

концентрацій  мікроелементів  (0,  25,  50,  75,  87,5  і  100%)  модифікованого 

розчину  Хогланда.  Результати  показали,  що  внесення  мікроелементів  має 

значний вплив на продуктивність Brassica carinata на різних життєвих стадіях. 

Внесення бору (B) мало найбільший вплив на ріст і розмноження. Оптимальні 

відносні концентрації елементів у тканинах листків змінювалися залежно від 

концентрації  мікроелементів  та  стадій  розвитку.  У  різні  періоди  розвитку 
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спостерігалися  певні  закономірності  накопичення  поживних  речовин  у 

тканинах  листків,  незважаючи  на  збільшення  концентрації  мінеральних 

елементів, таких як B (47,2‐50,0 мг‐кг), Cu – фаза вегетації (6,62‐7,57 мг‐кг), Zn 

–  фаза  вегетації  (27,47‐39,87)  і  квітування  (33,98‐43,50  мг‐кг),  Mo  –  фаза 

квітування  (2,42‐3,23  мг‐кг)  та  Mn  –  фаза  бутонізації  (117,03‐161,63 мг‐кг). 

Таким  чином,  Brassica  carinata  має  різні  вимоги  до  родючості  грунту  і 

накопичує  різні  концентрації  мінеральних  елементів  у  тканинах  листкової 

пластинки на різних етапах свого розвитку (Cockson et al., 2021). 

В  іншому  дослідженні  було  оцінено  вплив  норм  азоту  на  показники 

поглинання  поживних  речовин,  біомаси,  врожайності  насіння  та  хімічного 

складу. Максимальна врожайність насіння досягалася при нормі 134 кг/га азоту. 

Вміст білку та глюкозинолатів у насінні знижувалися при внесенні норм азоту 

до 90 кг/га і зростала за більших норм, тоді як вміст олії, навпаки, збільшувався. 

Час і спосіб внесення азоту значно впливали на врожайність, а накопи‐

чення сухої речовини лінійно зростало. Цей показник збільшувався на 35 % при 

90 кг/га і на 82 % – при 134 кг/га азоту порівняно з контролем (Bashyal et al., 2021). 

Ще одне дослідження мало на меті виявити вплив високо температур‐

ного  стресу  на  рослину.  В  результаті  досліджень  було  виявлено, що  високі 

температури  мали  суттєвий  вплив  на  ріст  і  розвиток  рослин,  зумовлюючи 

зниження рівня ненасиченості мембранних ліпідів. Ці адаптаційні механізми 

підтримують плинність мембран  і можуть слугувати основою для створення 

стійких до високих температур сортів рослин, що дозволить ефективніше ви‐

рощувати рослини у регіонах зі спекотним кліматом (Zoong Lwe et al., 2021). 

Насіння  B.  carinata  містить  від  18,7  до  28,3 %  білку  та  42–52 %  олії  з 

добре розподіленим профілем жирних кислот. Загалом у різних зразках олії 

було  ідентифіковано  16  жирних  кислот.  Ерукова  кислота  (41–43 %)  складає 

основний компонент жирних кислот, за якою слідують лінолева, ліноленова 

та  олеїнова  кислоти  (Kumar  et  al.,  2020).  B.  carinata  демонструє  бажаний 
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профіль  олії,  широку  адаптивність  і  продуктивність  за  неоптимальних  умов 

(Blackshaw et al., 2011; Gesch et al., 2019). 

Протягом  життєвого  періоду  в  рослин  спостерігається  зміна  хімічного 

складу:  зростає  вміст  олії  та мононенасичених жирних  кислот,  тоді  як  вміст 

білку, глюкозинолатів і поліненасичених жирних кислот зменшується (Seepaul 

et al., 2021). 

Результати  досліджень  інших  авторів  також  підтверджують,  що  вміст 

олії  в насінні  є досить високим та  становить від 35,93 до 45,25%. Склад олії 

насіння  варіюється  за  вмістом  жирних  кислот  залежно  від  сорту  і  умов 

вирощування, але зазвичай містить 35–44 % ерукової, 15–22 % лінолевої, 16–

20 % ліноленової, 10–12% олеїнової, 7–9 % ейкозенової, 2–4 % пальмітинової 

кислоти  (Mulvaney,  2019).  Також  олія  містить  високий  рівень  неомильних 

речовин та низькі значення первинних  і вторинних продуктів окислення, які 

не перевищували регламентовані межі (Mohdaly et al., 2022).  

Окрім  цього  рослини  мають  низький  вміст  кисню  (7,80%)  і  киснево‐

вуглецеве  співвідношення  (0,07), що  зменшує  потребу  у  водні  при  гідроде‐

зоксигенації. Метали, гетероатоми (азот, сірка)  і фосфор присутні в дуже низь‐

ких концентраціях. Основні функціональні групи рослини включають: алкани, 

алкени, карбонові кислоти, складні ефіри та спирти (Redda et al., 2024). 

Хімічний  склад  B.  carinata,  зокрема  її  олії,  дозволяє  використовувати 

рослину як високоефективну  сировину для виробництва біопалива. Наприк‐

лад,  у  США  вирощування  цієї  культури  як  озимої  надає  можливість 

виробникам отримати значну кількість біопаливної сировини для задоволен‐

ня  внутрішніх  енергетичних  потреб.  Гірчиця  ефіопська  вписується  в  існуючі 

системи землеробства як озима культура, не вимагаючи значних змін в мето‐

дах  обробки  землі.  Зокрема,  у  Джей  (штат  Флорида  США)  було  проведено 

дослідження щодо кількісної оцінки впливу хронології посівів на продуктив‐

ність у диверсифікованих сівозмінах. В результаті було виявлено, що врожай‐
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ність і якість насіння не залежали від хронології посівів. Дослідження показа‐

ло, що нечутливість врожайності рослин до попередніх ярих культур дозволяє 

гнучко  інтегрувати  її  в  сівозміни,  надаючи можливість  обробляти  понад  1,4 

мільйона  гектарів,  з  яких  можна  отримати  понад  1224 мільйони  літрів 

авіаційного палива, таким чином замінивши 1,40–2,33 % від загальних потреб 

авіаційного палива на нафтовій основі (Alam et al., 2019; Joseph E. et al, 2023). 

В  Іспанії  та  Італії  олія  з  насіння  також  використовується  для 

виробництва  біопалива  і  для  біопромислових  цілей,  наприклад, 

виготовлення мастила, фарби, косметики, пластмаси (Cardone et al., 2003). 

У Канаді рослина B.  carinata  також активно розглядається як  культура 

для  виготовлення  біопалива,  але  в  даний  час  вирощується  як  покривна 

культура для зменшення ерозії ґрунту і використання гербіцидів, а також для 

сприяння  збереженню  вологи  в  садах.  Подібним  чином  B.  carinata 

використовується  і  в  Україні.  Покривна  культура  заорюється  в  ґрунт  для 

використання  як  сидерат  або  біофумігант.  Крім  того,  аліл‐ізотіоціанат  із 

насіння B. carinata використовується як біофумігант та біопестицид (Blackshaw 

et  al.,  2011;  Alcántara  et  al.,  2011;  WWF…,  2024).  B.  carinata  також 

використовується для фіторемедіації важких металів (Ahmed et al., 2001). 

Рослини B. carinata можуть використовуватися як корм для ВРХ, або у 

чистому  вигляді,  або  у  вигляді  шроту  –  побічного  продукту  переробки 

насіння.  Враховуючи  хімічний  склад  та  економічну  ефективність  набагато 

доцільніше  використовувати  саме  шрот  у  якості  кормів,  отриманий  після 

вилучення з нього олії для інших потреб. Такий корм є високобілковим, його 

можна  додавати  до  суміші  разом  з  іншими  джерелами  білка  –  для 

повноцінного задоволення потреб худоби.  

Після екстракції гексаном шрот має такий хімічний склад: вміст вологи – 

7,69–9,23 %; сирий жир – 9,70–16,90 %; протеїн – 41,21–45,50 %; клітковина – 

21,32–28,35 %;  зола  –  4,22–4,60 %.  В  шроті  наявні  макроелементи  (Mg,  Ca, 
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P, K) та мікроелементи (Al, Fe, Zn), а також помірний вміст сірки (1,13–1,38 %) 

й азоту (5,65–6,85 %). 

До  того  ж  шрот  Brassica  carinata  різних  генотипів  може  бути  цінним 

джерелом  природних  антиоксидантів  –  завдяки  своїй  антиоксидантній 

здатності  та  потенціалу  поглинання  вільних  радикалів.  Загальний  вміст 

фенолів  і  протеїну  в  екстракті  шроту  Brassica  carinata  варіював  від  43,2  до 

132 мг/100 г та від 24,6 до 35,4 мг/100 г відповідно. 

Це робить шрот B.  carinata  високоцінним білковим кормом  з  багатим 

амінокислотним  складом  та  беззаперечною  харчовою  цінністю,  особливо  у 

сучасних екологічних умовах (Schulmeister et al., 2019, Redda et al., 2024). 

Зважаючи на походження  (гірські райони Африки)  і поширення  (окрім 

Африки,  в  Азії,  Південній  Європі,  Австралії,  Північній  Америці,  Канаді)  ця 

культура  в  умовах  України  представляє  великі  перспективи  для  реалізації 

свого  генетичного  та  біологічного  потенціалу  за  стійкістю  до  абіотичних  і 

біотичних  стресових  факторів,  а  також  забезпечення  високої  урожайності 

(Roslinsky, 2021; Thakur et al., 2019; Yim et al., 2022, Рахметов, 2024).  

Brassica carinataA. Braun – гірчиця ефіопська – нова для України олійна 

рослина,  яка  проходить  комплексні  інтродукційні,  селекційно‐генетичні  та 

фізіолого‐біохімічні дослідження на базі НБС імені М.М. Гришка НАН України 

(спільно  з  ДУ  «Інститутом  харчової  біотехнології  і  геноміки  НАН  України»). 

Створено  колекцію  генотипів  Brassica  carinata  різного  походження,  яка 

налічує близько 30 таксонів.  

Рослини  Brassica  carinata  мають  такі  біолого‐морфологічні 

характеристики  (Методика…,  2024):  однорічна  трав’яна  рослина;  висота 

рослин – до 200 (інколи вище) см; діаметр стебла до 20 мм; листки чергові, 

голі або злегка опушені та часто воскові; нижні листкові пластинки – до 20 см 

завдовжки  і 10 см завширшки;  суцвіття – сильно розгалужені, пухкі,  складні 

кисті; квітки – актиноморфні; квітконіжки циліндричні – 5–6 мм завдовжки;. 
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чашолистки чотири, світло‐зелені – 4‐7 мм завдовжки; пелюстки кремові або 

жовті,  білі  –  6‐10  мм  завдовжки;  тичинок  –  шість;  плоди  –  нерозкривні 

стручки;  стручки  –  до  5  см  завдовжки;  кількість  насінин  у  стручку  –  до  20; 

насіння кулясте, діаметром 1,0–1,5 мм; забарвлення насіння – від жовтого до 

жовто‐коричневого і коричневого; насіння містить 25–47% олії. 

Brassica  carinata  в  умовах  України  показала  великий  продуктивний 

потенціал  та  стійкість  і  може  бути  перспективною  олійною  культурою  за 

використання  відповідних  молекулярно‐генетичних  та  біотехнологічних 

методів  для  створення  цінних  генотипів  і  сортів  із  заданими  кількісними  та 

якісними характеристиками олії.  

Зважаючи  на  високий  адаптивний  та  продуктивний  потенціал  рослин 

Brassica  carinata  і  враховуючи  потреби  вітчизняного  енергетичного  та 

продовольчого ринку є необхідність у залученні до всебічних інтродукційних 

досліджень  в  умовах  України  широкого  спектру  генотипів  цих  рослин  для 

введення  у промислову  культуру  і  розширення вітчизняної  сировинної  бази 

олійних рослин. 
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РОЗДІЛ 3. 
УМОВИ, ОБ’ЄКТИ ТА МЕТОДИ ПРОВЕДЕННЯ  ДОСЛІДЖЕНЬ  

 
 
 

 
Польові та лабораторні дослідження щодо створення, оцінки та відбору 

високопродуктивних селекційно‐генетичних ліній, форм, сортозразків і сортів 

гірчиці  ефіопської  (Brassica  carinata),  рижію  озимого  (Camelina  sativa,  f. 

biennis), а також ріпаку (B. napus, f. annua) та опрацювання сучасних методів 

поліпшення біотрофних властивостей ґрунту і методів безвідходної утилізації 

побічної  продукції  рослин  були  проведені  на  експериментальній  базі 

Національного  ботанічного  саду  імені М.М. Гришка  НАН  України  (НБС  імені 

М.М.  Гришка)  та  Дослідного  сільськогосподарського  виробництва  Інституту 

фізіології рослин і генетики НАН України (ДСВ ІФРГ НАН України «Глеваха»).  

Об’єкт  досліджень  –  процес  мобілізації,  інтродукційного  вивчення 

різних  генотипів  гірчиці  ефіопської  (Brassica  carinata)  та  рижію  (Camelina 

sativa)  (у  порівнянні  з  ріпаком  –  B.  napus)  і  створення  високопродуктивних 

селекційних  ліній  та  сортозразків  рослин.  Розробка  методів  покращення 

ростових  і  продуктивних  показників  рослин  та  поліпшення  біотрофних 

властивостей грунту за використання оригінальних кремнієвмісних добрив. 

Предмет  дослідження  –  економічно  важливі  олійні  культури:  гірчиця 

ефіопська (Brassica carinata); рижій посівний (Camelina sativa); ріпак (Brassica 

napus) і кремнієвмісні добрива. 

Внаслідок  проведених  інтродукційних,  генетично‐селекційних  та 

біотехнологічних  досліджень  у  відділі  культурної  флори  НБС 

імені М.М. Гришка  НАН  України  зібрано  цінну  генофондову  колекцію  (KF‐

705.2)  економічно  важливих  олійних  культур:  рижію  посівного  (Camelina 

sativa) – 35 зразків; гірчиці ефіопської (Brassica carinata) – 17; ріпаку (Brassica 

napus) – 32 зразки (табл.3.1‐3.3, рис. 3.1‐3.3). 
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Таблиця 3.1 
Генофондова колекція мобілізованих і створених  

високопродуктивних форм рослин рижію посівного (Camelina sativa) 
 

Латинська назва  Українська назва 
1  2 

Camelina sativa (L.) Crantz 
(f. biennis) 

Рижій посівний 
(озима форма) 

Camelina sativa (L.) Crantz 
(f. biennis), cv.s. Bohemskyi 

Рижій посівний (озима форма), 
с. Богемський 

Camelina sativa (L.) Crantz 
(f. annua), cv. Yevro‐12 

Рижій посівний (яра форма),  
с. Євро‐12 

Camelina sativa (L.) Crantz  
(f. annua), cv. Kolondaik 

Рижій посівний (яра форма), 
с. Колондайк 

Camelina sativa (L.) Crantz  
(f. annua), cv. Mirazh 

Рижій посівний (яра форма),  
с. Міраж 

Camelina sativa (L.) Crantz  
(f. annua), cv. Peremoha 

Рижій посівний (яра форма),  
с. Перемога 

Camelina sativa (L.) Crantz  
(f. annua), f. EORZHIAFCH 

Рижій посівний (яра форма), 
ф. ЕОРЖЯФЧ 

Camelina sativa (L.) Crantz  
(f. annua), f. EORZHIAF‐1 

Рижій посівний (яра форма), 
ф.ЕОРЖЯФ‐1 

Camelina sativa (L.) Crantz  
(f. annua), f. EORZHIAF‐2 

Рижій посівний (яра форма), 
ф. ЕОРЖЯФ‐2 

Camelina sativa (L.) Crantz.  
(f. annua), f. EORZHIAF‐3 

Рижій посівний (яра форма), 
ф. ЕОРЖЯФ‐3 

Camelina sativa (L.) Crantz  
(f. annua), f. EORZHIAF‐4 

Рижій посівний (яра форма), 
ф. ЕОРЖЯФ‐4 

Camelina sativa (L.) Crantz  
(f. annua), f. EORZHIAF‐5 

Рижій посівний (яра форма), 
ф. ЕОРЖЯФ‐5 

Camelina sativa (L.) Crantz  
(f. annua), f. EORZHIAFD 

Рижій посівний (яра форма), 
ф. ЕОРЖЯФД 

Camelina sativa (L.) Crantz  
(f. annua), f.1 

Рижій посівний (яра форма),  
ф.1 

Camelina sativa (L.) Crantz 
(f. annua), f.2 

Рижій посівний (яра форма),  
ф.2 

Camelina sativa (L.) Crantz  
(f. annua), f.3 

Рижій посівний (яра форма),  
ф.3 
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Продовження табл. 3.1 

1  2 
Camelina sativa (L.) Crantz  
(f. annua), f. EORZHIAFCHР 

Рижій посівний (яра форма), 
ф. ЕОРЖЯФЧП 

Camelina microcarpa Andrz.  Рижій дрібноплідний 
 

Camelina sativa (L.) Crantz  
(f. annua) 

Рижій посівний (яра форма) 

Camelina sativa (L.) Crantz  
(f. annua) 

Рижій посівний (яра форма) 

Camelina sativa (L.) Crantz  
(f. annua), cv. Pivnichna krasunia 

Рижій посівний (яра форма), 
с. Північна красуня 

Camelina sativa (L.) Crantz  
(f. annua) 

Рижій посівний (яра форма 

Camelina sativa (L.) Crantz 
 (f. annua), cv. Suneson 

Рижій посівний (яра форма,  
c. Сунесон 

Camelina sativa (L.) Crantz 
 (f. annua), f. 1‐TFR 

Рижій посівний (яра форма,  
ф. 1‐ТФР 

Camelina sativa (L.) Crantz  
(f. annua), f. 2‐TFR 

Рижій посівний (яра форма,  
ф. 2‐ТФР 

Camelina sativa (L.) Crantz 
 (f. annua), f. 3‐TFR 

Рижій посівний (яра форма, 
 ф. 3‐ТФР 

Camelina sativa (L.) Crantz 
 (f. annua), f. 4‐TFR 

Рижій посівний (яра форма,  
ф. 4‐ТФР 

Camelina sativa (L.) Crantz 
 (f. annua), f. 5‐TFR 

Рижій посівний (яра форма,  
ф. 5‐ТФР 

Camelina sativa (L.) Crantz  
(f. annua), f. 6‐TFR 

Рижій посівний (яра форма,  
ф. 6‐ТФР 

Camelina sativa (L.) Crantz  
(f. annua), f. 7‐TFR 

Рижій посівний (яра форма,  
ф. 7‐ТФР 

Camelina sativa (L.) Crantz,  
cv. Yubyliar, UE 0600069, ІNК 

Рижій посівний, сорт Юбиляр,     
UE 0600069, ІНК  

Camelina sativa (L.) Crantz,  
cv. Kozyr,   

Рижій ярий, сорт Козирь,  
UE0600071  

Camelina sativa (L.) Crantz,  
cv. Brazetto 

Рижій посівний,  
сорт Бразетто 

Camelina sativa (L.) Crantz, cv.Runo  Рижій посівний, сорт Руно 
 

Camelina sativa (L.) Crantz, cv.Ranok  Рижій посівний, сорт Ранок 
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Таблиця 3.2  
Генофондова колекція мобілізованих і створених  

високопродуктивних форм рослин ріпаку (Brassica napus) 
 

Латинська назва Українська назва 
Brassica napus L. f. annua DC., сvs. Rimal   Ріпак ярий, сз. Рімал 
Brassica napus L. f. annua DC., сv. Yamal  Ріпак ярий, с. Ямал 
Brassica napus L. f. annua DC., сv. Mriia  Ріпак ярий, с. Мрія 
Brassica napus L. f. annua DC.,сv. Sribliastyi  Ріпак ярий, с. Сріблястий 
Brassica napus L. f. annua DC., сv. Bolero  Ріпак ярий, с. Болеро 
Brassica napus L. f. annua DC., сv.Yantar‐H Ріпак ярий, с.  Янтар‐Г 
Brassica napus L. f. annua DC., f. EORIAFA  Ріпак ярий, ф. ЕОРЯФА 
Brassica napus L. f. annua DC., f. EORIAFAP  Ріпак ярий, ф. ЕОРЯФАП 
Brassica napus L. f. annua DC., f. EORIAFK  Ріпак ярий, ф. ЕОРЯФК 
Brassica napus L. f. annua DC., f. EORIAFVL  Ріпак ярий, ф. ЕОРЯФВЛ 
Brassica napus L. f. annua DC., f. EORIAOFV  Ріпак ярий, ф. ЕОРЯОФВ 
Brassica napus L. f. annua DC., f. EORIAF‐5 Ріпак ярий, ф. ЕОРЯФ‐5 
Brassica napus L. f. biennis DC., cv. Falkon  Ріпак озимий, c.Фалкон 
Brassica napus L. f. biennis DC.,  
cv. Senator liuks 

Ріпак озимий, c. Cенатор люкс

Brassica napus L. f. biennis DC., cv. Vatan  Ріпак озимий, с. Ватан 
Brassica napus L. f. biennis DC.,  cv. Sveta  Ріпак озимий, с. Света 
Brassica napus L. f. biennis D.C., cv. Dembo  Ріпак озимий, с. Дембо 
Brassica napus L. f. biennis DC.,cv. Kronos  Ріпак озимий, c. Kронос 
Brassica napus L. f. biennis DC., cv. Danhal Ріпак озимий, с. Дангал 
Brassica napus L. f. biennis DC., 
cv. Mykytynetskyi 

Ріпак озимий, 
с. Микитинецький 

Brassica napus L. f. biennis DC., 
cv.Tysmenytskyi 

Ріпак озимий 
c. Тисменицький 

Brassica napus L. f. biennis DC., f. EROF‐1  Ріпак озимий, ф. ЕРОФ‐1 
Brassica napus L. f. biennis DC., f. EROF‐2  Ріпак озимий, ф. ЕРОФ‐2 
Brassica napus L. f. biennis DC., f. EROF‐3  Ріпак озимий, ф. ЕРОФ‐3 
Brassica napus L. f. biennis DC., f. EROF‐4  Ріпак озимий, ф. ЕРОФ‐4 
Brassica napus L. f. biennis DC., f. EROF‐5  Ріпак озимий, ф. ЕРОФ‐5 
Brassica napus L. f. biennis DC., f. EROF‐6 Ріпак озимий,  ф. ЕРОФ‐6 

Brassica napus L. f. biennis DC., f. EROFD‐1  Ріпак озимий, ф. ЕРОФД‐1 
Brassica napus L. f. biennis DC., f. EROFITSB  Ріпак озимий, ф. ЕРОФІЦБ 
Brassica napus L. f. biennis DC., f. EROFK  Ріпак озимий, ф. ЕРОФК 
Brassica napus L. f. biennis DC., f. EROF‐Odil A Ріпак озимий, ф. ЕРОФ‐Оділ А
Brassica napus L. f. biennis DC., f. EROFVH  Ріпак озимий, ф. ЕРОФВГ 
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Таблиця 3.3 
Генофонд мобілізованих та відібраних високопродуктивних форм 

 рослин гірчиці ефіопської або капусти кільоподібної (Brassica carinata) в НБС 
імені М.М. Гришка НАН України 

Латинська назва  Українська назва 
Brassica carinata A. Braun, 
 f. BC NPF‐1   

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 1 

Brassica carinata A. Braun,  
f. BC NPF‐ 2     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 2 

Brassica carinata A. Braun,  
f. BC NPF‐ 3     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 3 

Brassica carinata A. Braun, 
 f. BC NPF‐ 4     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 4 

Brassica carinata A. Braun,  
f. BC NPF‐ 5     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 5 

Brassica carinata A. Braun,  
f. BC NPF‐ 6     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 6 

Brassica carinata A. Braun, 
 f. BC NPF‐ 7     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 7 

Brassica carinata A. Braun,  
f. BC NPF‐ 8     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК ППФ ‐ 8 

Brassica carinata A. Braun,  
f. BC SCF‐ 1  

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК СГСФ ‐ 1 

Brassica carinata A. Braun,  
f. BC SCF‐ 2     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК СГСФ ‐ 2 

Brassica carinata  A. Braun,  
f. BC SCF‐ 3    

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК СГСФ ‐ 3 

Brassica carinata A. Braun,  
f. BC SCF‐ 4     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК СГСФ ‐ 4 

Brassica carinata A. Braun, 
 f. BC SCF‐ 5     

Гірчиця ефіопська (капуста 
кільоподібна), ф. КК СГСФ ‐ 5 

Brassica carinata A. Braun,  
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Рис. 3. 1. Колекція генотипів Camelina sativa (А і Б) та сорт Руно (В) 

 

 

А 
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 Б 

Рис. 3. 2. Колекція генотипів Brassica carinata (А) та відібрана форма (Б) 

 

 
Рис. 3. 3. Генотип Brassica napus 
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Проведено дослідження з вивчення впливу кремінєвмісних добрив на 

ріст,  розвиток  і  продуктивність  рослин  рижію,  гірчиці  та  ріпаку  у  різні  фази 

розвитку (рис. 3. 4). 

 А 

Вегетативна фаза 

 Б 

Фаза квітування 
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В 

Фаза дозрівання насіння 

Рис. 3. 4. Дослід із вивчення впливу кремінєвмісних  
добрив на ріст, розвиток і продуктивність рослин рижію, гірчиці та 

ріпаку в різні фази розвитку (А‐В) 
 

Погодні  умови  у  період  проведення  досліджень  (2023‐2024  рр.).  Як 

свідчать  результати  досліджень,  період  вегетації  рослин  у  2023  р. 

характеризувався  тим,  що  середньомісячна  температура  була  значно  вища 

від норми у період з квітня по жовтень  (Центральна…, 2023) (рис. 3. 5).  

 

Рис. 3. 5. Середньомісячна температура повітря 
 у 2023 р. порівняно з нормою, °С 
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Місячна кількість опадів у період вегетації суттєво перевищувала норму 

в липні. Особливо посушливими були травень, серпень і вересень (рис. 3. 6). 

 
Рис. 3. 6. Середньомісячна кількість  

опадів у 2023 р. порівняно з нормою, мм 
 

Період  вегетації  рослин  у  2024  р.  характеризувався  тим,  що 
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березня  по жовтень  (Центральна…, 2024) (рис. 3. 7).  

 
Рис. 3. 7. Середньомісячна температура повітря у 2024 р.  
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Місячна кількість опадів у період вегетації суттєво перевищувала норму 

в квітні та особливо у червні. Посушливими були травень, серпень і вересень 

(рис. 3. 8). 

 
Рис. 3. 8. Середньомісячна кількість опадів у 2024 р. 

порівняно з нормою, мм 
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Польові  досліди  закладали  відповідно  до  існуючих  методик  для 

Держсортмережі  та  науково‐дослідних  установ  у  чотирьохкратному 

повторенні. Розмір посівних ділянок – 35‐40 м2, їх облікова площа – 25‐30 м2. 

Розміщення варіантів по повтореннях – систематичне і рендомізоване.  

Кремнієвмісне добриво, до складу якого входять мулові відклади (70%) 

і природний мінерал анальцим (30%), вносили із розрахунку 300 кг/га. 

  Висота рослин, морфологічний опис їхніх органів визначались шляхом 

вимірів  та  візуально.  Для  вивчення  морфологічних  особливостей  будови 

представників  досліджуваних  родин  застосовувалась  загальноприйнята 

морфологічна термінологія (Zyman et al., 2012).  

Морфологічний  опис  мікроскульптури  поверхні  насіння  рослин  вико‐

нано згідно Illustrated guide to the morphology of flowering plants (Zyman et al., 

2012). Також використано біометричний і порівняльний методи визначення їх 

зовнішніх та внутрішніх ознак. Одночасно проведено фотофіксацію у проекції 

за  довжиною, шириною  та  поперечному  розрізі  за  використання  електрич‐

ного  USB  мікроскопу  SIGETA  Expert  10‐300x  5.0Mpx,  а  також  цифрової 

фотокамери Canon 400 D. Лінійні розміри фіксували електронним цифровим 

штангенциркулем «Generic» і вимірювальної стрічки Xiaomi Duka SD. 

Масу  1000  насінин  оцінювали  на  електронних  аналітичних  вагах  AXIS 

ANG  200C  у  десятиразовій  повторності  згідно  міжнародних  правил  аналізу 

насіння (1999). 

Біохімічні аналізи рослинних зразків проведені  у динамиці від початку 

до  завершення  вегетації  згідно  загальноприйнятих  методик  у  біохімічній 

лабораторії  відділу  культурної  флори  НБС  імені  М.  М.  Гришка.  Аналізи  по 

дослідженню  алелопатичних,  мікробіологічних  та  біохімічних  особливостей 

рослин і ґрунту проведені у лабораторіях відділу алелопатії НБС. 

Дослідні  зразки  відбирали  у фазу  квітування,  плодоношення  та дозрі‐

вання насіння згідно загальноприйнятих методик. Для виявлення біохімічної 



64 

цінності  рослин  визначали:  абсолютно  суху  речовину  шляхом  висушування 

зразків при температурі 105оС до постійної маси; золу – методом спалювання 

зразків в муфельній печі «СНОЛ 7,2‐1100» (Termolab) (при 500…700оС). Вміст 

фотосинтетичних пігментів (хлорофілів a і b) визначали спектрофотометрично 

–  спектрофотометр  «Specor»  UNICO  2800  (Мусиенко,  2001).  Вміст  азоту  у 

рослинних  зразках  визначали  методом  Кьельдаля  на  апараті  KDN  –  04D  – 

Kjeldal Digestion Unit та апарат ATN – 100. Загальний вміст цукрів – методом 

Бертрана,  вміст  аскорбінової  кислоти  –  методом  титрування  2,6‐

дихлорфеноліндофенолом.  

Визначення  певних  класів  біологічно  активних  речовин  зокрема,  вто‐

ринних рослинних метаболітів виконано на базі ЦККП «Високоефективна рі‐

динна хроматографія (ВЕРХ)» НБС імені М.М. Гришка НАН України на автома‐

тичному  чотирьохканальному  рідинному  хроматографі  Agilent  1100 з  діодно‐

матричним детектором та хімічною станцією (Agilent Technologies – Німеччина). 

Проведено  аналіз  сировини  рослин  –  листки,  стебла,  суцвіття,  плоди, 

корені – різних форм гірчиці ефіопської на вміст хімічних елементів з метою 

оцінки  її  збагаченості  окремими  елементами  та  безпечності.  Аналізи 

виконані  у  Центрі  колективного  користування  науковими  приладами 

«Спектрометричний центр елементного аналізу» Національного ботанічного 

саду імені М. М. Гришка НАН України.  

Кількісний  і  якісний    склад  хімічних  елементів  у  рослинній  сировині 

визначали методом мас‐спектрометрії з індукційно‐зв’язаною плазмою (ІЗП – 

МС) на апараті ICAP 6300 DUO (Thermo Fisher Scientific, США). Межі виявлення 

елементів  для  даного  апарату  сертифіковані  ДП  "УКРМЕТРТЕСТСТАНДАР‐

ТОМ". Суть методу полягає у тому, що розчин, який досліджується, подається 

за допомогою насосу до розпилювача, у якому потоком аргону переходить в 

аерозоль. Аерозоль через  інжектор плазмової горілки потрапляє до плазми, 

де під дією високої  температури  (7000‐8000 К)  всі  елементи,  які містяться  у 



65 

пробі,  іонізуються.  Утворені  позитивно  заряджені  іони  проходять  крізь 

систему іонної оптики до аналізатора, де відбувається відбір  іонів  із певним 

співвідношенням маси  до  заряду  (m/z)  і  детектування  інтенсивності  потоку 

відповідних  іонів.  Сигнал,  який  отримується,  трансформується  у  залежність 

інтенсивності від величини m/z і обробляється. Перевагою цього методу є те, 

що визначення елементів можливе як на найнижчому рівні концентрації, так 

і на високих рівнях, що забезпечує якість багатоелементного аналізу.  

Підготовку проб абсолютно сухої рослинної сировини проводили шля‐

хом  гомогенізації,  зважування  з  подальшим  озоленням  розчином  азотної 

кислоти. Потім наважки переміщували до хімічної мікрохвильової печі. У ній 

під  дією  заданих  параметрів  тиску  і  температури  відбувалося  розкладання 

зразків. Отриманий екстракт вводили безпосередньо до мас‐спетрометра і за 

допомогою концентричного розпилювача переводили в  аерозоль  з подаль‐

шим поданням до аргонової плазми, де проходила іонізація. Потім відбувала‐

ся сепарація іонів за мас‐зарядним співвідношенням і вимірювання інтенсив‐

ності сигналів цих сепарованих іонів аналітів. Повторність досліду – трикратна. 

Статистичну  обробку  отриманих  даних  здійснювали  за  допомогою 

програми  Microsoft  Exсel  2010  (пакет  «Аналіз  даних»).  Для  вираження 

отриманих  даних  використовували  мінімальні,  максимальні,  середні 

значення, стандартне відхилення, коефіцієнт варіації. 
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РОЗДІЛ 4. 
РОСТОВІ, БІОХІМІЧНІ ОСОБЛИВОСТІ ТА  

ПРОДУКТИВНІСТЬ МОБІЛІЗОВАНИХ І СТВОРЕНИХ ГЕНОТИПІВ 
РОСЛИН РИЖІЮ (CAMELINA SATIVA) 

 
 

4.1. Ростові особливості та продуктивність 
 мобілізованих і створених генотипів рослин рижію 

 
Протягом багаторічного періоду у відділі культурної флори Національ‐

ного ботанічного саду імені М.М. Гришка НАН України створена унікальна за 

якісним  і  кількісним  складом  колекція  олійних  рослин,  яка  включає  понад 

200 таксонів. Серед цього колекційного фонду генотипова колекція Camelina 

sativa  нараховує  близько  35  зразків.  На  основі  цього  вихідного  матеріалу 

різними селекційними методами виведено понад 10 ярих та 5 озимих форм 

рослин. Слід зазначити, що всі включені до Державного реєстру сорти рижію 

відносяться до ярої форми рослин. На жаль, сорти озимої форми рослин досі 

відсутні в культурі в Україні. 

За  наслідками  досліджень  представників  роду  Camelina  встановлено 

морфолого‐біологічні,  екологічні, біохімічні особливості рослин різних форм 

та сортів. Визначено особливості проходження продукційних процесів, нако‐

пичення  важливих  речовин  у  рослин,  формування  урожайності  надземної 

маси і насіння та структури урожаю. Виявлено вміст та вихід ліпідів із насіння, 

визначено  жирнокислотний  склад  жирної  олії  і  на  цій  основі  встановлено 

найперспективніші генотипи.  

Встановлено,  що  в  умовах  досліджень  генотипи  рослин  Camelina  sativa 

проходять всі етапи органогенезу за один вегетаційний період. Розвивається 

від  набубнявіння насіння до його дозрівання.  Рослини проходять фази  роз‐

витку:  сходи,  перший  справжній  листок,  розетка,  стеблування,  бутонізація, 

квітування,  плодоношення  і  дозрівання. Фаза масового  квітування  в  озимої 

форми рослин проходить у ІІІ декаді квітня – І декаді травня, ярої форми – в 
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І –  ІІ  декадах  червня.  Дозрівання  насіння  в  озимої  форми  відбувається 

одночасно  на  початку  червня,  ярої  форми  –  на  початку  липня.  Тривалість 

вегетаційного періоду ярих форм рослин становить від 55 до 95 діб, озимих – 

270‐300 діб. 

За результатами досліджень встановлено, що рослини рижію посівного 

різних генотипів у фазі технічної стиглості вирізняються за морфометричними 

показниками.  Визначено  висоту  рослин,  довжину  кореня,  діаметр  стебла  у 

основі у 25 зразках рижію у фазі плодоношення‐дозрівання (рис. 4. 1, А‐В).  
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Рис. 4. 1. Висота рослин і довжина коренів різних генотипів  

рижію посівного ярого у фазі плодоношення‐дозрівання (А‐В) 
 

Установлено,  що  висота  рослин  рижію  залежно  від  генотипів 

змінюється  від  62,5  см  до  94,0  см  Найбільшою  висотою  характеризувалися 

рослини рижію ф. 1 та сорт Перемога, найменшою – с. Колондайк. Довжина 

кореня  у  генотипів  рижію  посівного  ярого  у фазі  плодоношення‐дозрівання 

була різною і становила від 9,2 до 14,5 см.  

У  роботах  D.  Neupane  та  інших  (2018,  2019,  2020),  M.  Berti  (2010) 

зазначається,  що  залежно  від  форми,  сорту  та  умов  вирощування  висота 

рослин рижію коливається у межах від 30 до 120 см. 

Найбільший  діаметр  стебла  серед  зразків  рослин  рижію  мали  сорти 

Руно (3,9 мм) та Перемога (3,8), найменший – ф. 5‐ТФР (2,2 мм ) (рис. 4. 2). 
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Рис. 4. 2. Діаметр стебла в основі різних генотипів 
 рижію посівного ярого у фазі плодоношення‐дозрівання, мм 

 

Кількість  бічних  пагонів  на  рослині  становить  від  3  до  12,6  (рис.  4.3). 

Найбільшою  кількістю  бічних  пагонів  вирізнялися  р.  дрібноплідний  та  ф.  4‐

ТФР, найменшою – с. Колондайк. 
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Рис. 4. 3. Кількість бічних пагонів на рослині різних  
генотипів рижію посівного ярого у фазі плодоношення‐дозрівання 

 

  Кількість  стручків  на  рослині  та  насіння  у  стручку  генотипів  рижію 

посівного ярого у фазі плодоношення‐дозрівання була різною (рис. 4.4, А‐В).  
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Рис. 4. 4. Кількість стручків  на рослині та насіння у стручку різних генотипів 

рижію посівного ярого у фазі плодоношення‐дозрівання (А‐В) 
 

Кількість  стручків  на  основному  стеблі  сягає  від  22  до  44,  на  бічних 

пагонах  –  13‐29.  Найбільшою  їх  кількістю  вирізнялися  рослини  рижію  ф.2  і 

сорт Руно та р.дрібноплідний і ф. ЕОРЖЯФ‐4 відповідно. 

Кількість  насіння  у  стручку  різних  генотипів  рижію  посівного  ярого  у 

фазі  плодоношення‐дозрівання  сягала  від  10  до  15 шт.  Найбільшу  кількість 

мали ф. ЕОРЖЯФ‐5 і р.дрібноплідний, найменшу – ф. 2‐ТФР. 

Плід Camelina sativa – стручечок, обернено яйцеподібної форми. Носик 

плода  апікальний,  має  шилоподібну  форму.  Насіння  дрібне,  червоно‐

коричневе  (руде),  видовжено‐овальне.  За  результатами  багаторічних 

досліджень визначено, що довжина насіння змінюється у межах від 1,71 до 

2,10, ширина – 0,85‐1,11 мм. 

Морфометричні  показники  плодів  різних  генотипів  рижію  посівного 

ярого суттєво вирізнялися (рис. 4.5, А‐В). 
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Рис. 4. 5. Морфометричні показники плодів різних  
генотипів рижію посівного ярого, мм (А‐В) 

 

Довжина  плоду  становила  від  7,2  до  9,0  мм.  Найдовші  плоди  були 

характерні  для  сортів  Руно,  Перемога  та  Євро‐12,  найкоротші  –  у 

форми ЕОРЖЯФ‐3, рижію дрібноплідного та форми 4‐ТФР. 

Ширина плоду різних генотипів рижію змінювалася від 3, 2 до 4,5 мм і 

була найбільшою у сорту Руно та ф. 1, найменшою – у ф. 3‐ТФР та ф. ЕОРЖЯФ‐3. 

Товщина плоду становила від 3,4 до 4,2 мм. Найтовщими були плоди у 

ф.  3‐ТФР  та  сорту  Руно,  найтоншими  –  у  ф.  7‐ТФР  та  с.  Сунесон.  Довжина 

носика  плоду  була  різною  і  сягала  від  1,0  до  2,1 мм.  Найдовшим  він  був  у 

ф. 3‐ТФР та с. Ранок, найкоротшим – у с. Перемога та с. Міраж.  

Таким  чином,  у  період  технічної  стиглості  висота  рослин  залежно  від 

формових особливостей рослин змінюється від 62,5 до 94 см. Кількість бічних 

пагонів  на  рослині  становить  3‐12,6.  Кількість  стручків  на  основному  стеблі 

сягає  22‐44,  на  бічних  пагонах  –  13‐29.  За  основними  морфометричними 

параметрами встановлена суттєва перевага сортів Ранок і Руно.  
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Маса надземної частини, насіння та коренів була різною – залежно від 

генотипів рижію посівного ярого (рис. 4. 6, А‐В). 
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Рис. 4. 6 Маса надземної частини, насіння та коренів різних генотипів 
рижію посівного ярого у фазі плодоношення‐дозрівання (А‐В) 

 

Надземна маса у різних генотипів рижію становила від 53 до 86 г на 10 

рослин. Найбільшу фітомасу мали ф. 1 та ф. ЕОРЖЯФД, найменшу – с. Міраж.  

Урожайність насіння рижію залежить від умов зростання, сорту, форми. 

Високі показники урожайності були отримані в Австрії (Lošák et al., 2011), на 

півдні  Ефіопії  (Manore,  Yohanns,  2019). Низький  рівень  урожайності  насіння 

рижію були зафіксовані в дослідженнях, проведених у Канзасі, Неваді, США 

(Obeng et al., 2019; Neupane et al., 2018; 2019).  

В наших дослідженнях маса насіння  сягала від 10,3 до 18,0  г  з десяти 

рослин. Найбільшу масу насіння мали с. Ранок і ф. ЕОРЖЯФ‐1, найменшу – ф. 

7‐ТФР.  

Маса коренів у генотипів змінювалася від 5 до 12,9 г. Форма ЕОРЖЯФ‐4 

та ф. 7‐ТФР вирізнялися найбільшою масою коренів, а ф. 3 – найменшою.  
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Насіння  рижію  дрібне.  За  літературними  даними,  маса  1000  насінин 

становить від 0,6 до 2,2 г залежно від сорту та умов вирощування  (Obour et 

al., 2015; Vollmann et al., 2007). 

В  умовах  досліджень  залежно  від  формових  і  сортових  особливостей 

рижію маса 1000 насінин було різною (рис. 4. 7). 

 

 

Рис. 4.7. Маса 1000 насінин різних генотипів рижію 
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В  цілому,  маса  1000  насінин  різних  генотипів  рижію  змінювалася  від 

0,74 до 2,2 г. Найбільша маса 1000 насінин була у сорта Руно та ф. ЕОРЖЯФ‐2, 

найменша – у с. Сунесон і ф.3. 

  Зважаючи  на  велику  різницю між  генотипами  за масою  1000  насінин 

необхідно  виділити  п’ять  груп:  перша  група  включає  насіння  з  найменшою 

масою до 0,70 г, друга – меншою – 0,71‐1,10, третя – середньою – 1,20‐1,60, 

четверта – великою – 1,61‐2,00, п’ята група – включає насіння з дуже великою 

масою – понад 2,10 г. 

4. 2. Морфолого‐біологічні особливості плодів  
та насіння рослин різних генотипів Camelina sativa 

 
Вивчення  морфолого‐біологічних  особливостей  плодів  та  насіння 

рослин  будь‐якого  виду,  роду,  або  навіть  родини  дає  можливість  не  лише 

простежити  гетерогенність  ознак  різних  генотипів,  а  також  може  бути 

додатковою  інформацією  в  оцінці  стійкості  рослин  до  умов  довкілля. 

Кількість,  розміри, маса плодів  та насіння  з одного боку може виступати як 

критерій  оцінки  врожайності,  з  іншого  боку  –  свідчити  про  здатність  до 

самовідновлення  у  тих  чи  інших  умовах  інтродукції.  Тому  дослідження  цих 

показників є важливим фактором у комплексі інших досліджень. З огляду на 

це  було  досліджено  морфологічні  особливості  плодів  та  насіння  різних 

генотипів  рослин  Camelina  sativa  інтродукованих  з  різних  екологічних 

центрів,  а  також  відібраних  форм  та  створених  сортів  на  базі  відділу 

культурної  флори  НБС  імені  М.М.  Гришка  НАН  України.  Відомо,  що  плід  у 

рослин  Camelina  sativa  –  стручок,  утворений  із  двох  плодолистиків,  між 

якими  утворюється  плівчаста  поздовжня  перетинка  матового  забарвлення. 

Плоди  світлого  кольору  мають  жовтуватий  відтінок,  за  формою 

оберненояйцеподібні (рис. 4. 8). 
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Рис. 4. 8. Морфологічні особливості плодів рослин Camelina sativa 

залежно від генотипових особливостей: І – базальна, ІІ – латеральна, ІІІ – 
апікальна частини стебла; 1 – ф.1, 2 – ф. 2, 3 – ф. 3, 4 – с. Північна красуня,  

5 – ф. ЕОРЖЯФЧ, 6 – ф. ЕОРЖЯФ‐1, 7 – ф. ЕОРЖЯФ‐2, 8 – ф. ЕОРЖЯФ‐3, 
 9 – ф. ЕОРЖЯФ‐4, 10 – ф. ЕОРЖЯФ‐5, 11 – ф. ЕОРЖЯФД,  

12 – с. Колондайк, 13 – с. Євро‐12, 14 – с. Міраж, 15 – с. Перемога. 
 

Детальний  аналіз  плодів  рослин  зокрема  дослідження  крупності  та 

кількості  насінин  в  одному  з  двох  частин  стручка  дозволив  виявити  ряд 
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відмінностей і здійснити розподіл інтродуцентів на такі групи: крупнонасінні: 

ф.  1,  с.з.  Північна  красуня,  ф.  ЕОРЖЯФ‐1,  ф.  ЕОРЖЯФ‐3  та  ф. ЕОРЖЯФ‐5; 

рослини із середньою крупністю насінин: ф.2, ф.3, ф. ЕОРЖЯФЧ, ф. ЕОРЖЯФ‐2, 

с.  Колондайк,  с.  Євро‐12,  с. Міраж,  с. Перемога;  дрібнонасінні:  ЕОРЖЯФ‐4  і 

ЕОРЖЯФД.  Варто  зазначити,  що  переважна  більшість  генотипів 

характеризуються  досить  численним  вмістом  насінин  у  стручку.  Відмічено, 

що  у  рослин  генотипів  ф.1  та  с.  Євро‐12,  вирощених  у  вегетаційний  період 

2023  року,  малонасінними  виявилися  плоди  апікальної  частини  стебла,  що 

скоріш  за  все  було  викликано  низьким  рівнем  вологозабезпечення  та 

високим рівнем температури повітря у період зав’язування насіння (рис. 4. 9). 
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Рис. 4. 9. Наповненість насінням частини плоду рослин Camelina sativa 

залежно від генотипових особливостей: І – базальна, ІІ – латеральна, ІІІ – 
апікальна частини стебла. 

1 – ф.1, 2 – ф. 2, 3 – ф. 3, 4 – с. Північна красуня, 5 – ф. ЕОРЖЯФЧ, 6 – ЕОРЖЯФ‐1,  
7 – ЕОРЖЯФ‐2, 8 – ЕОРЖЯФ‐3, 9 – ЕОРЖЯФ‐4, 10 – ЕОРЖЯФ‐5, 11 – ЕОРЖЯФД, 12 – с. 

Колондайк, 13 – с. Євро‐12, 14 – с. Міраж, 15 – с. Перемога. 
 
Встановлено,  що  насіння  характеризується  відмінністю  за  формою, 

зокрема  у  рижію  посівного  ф.  2  (яра  форма)  на  відміну  від  інших 

представників досить часто зустрічається насіння округлої форми (рис. 4. 10),  
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Рис. 4. 10. Морфологічні особливості насінини рослин Camelina sativa 

залежно від генотипів: 
 1 – дрібнонасінний (яра форма), 2 – крупнонасінний (яра форма), 3 – с.з. Євро‐12 

(озима форма), 4 – с.з. Богемський (озима форма), 5 – с.з. Перемога (озима  форма),  
6 – с. Євро‐12 (яра форма), 7 – ф. 1‐ТФР (яра форма), 8 – ф. 2‐ТФР (яра форма),  
9 – ф. 3‐ТФР (яра форма), 10 – ф. 4‐ТФР (яра форма), 11 – ф. 5‐ТФР (яра форма),  

12 – ф. 6‐ТФР (яра форма), 13 – ф. 7‐ТФР (яра форма), 14 – с. Колондайк (яра форма),  
15 – с. Міраж (яра форма), 16 – с. Перемога (яра форма), 17 – с.з. Північна красуня 

(яра форма), 18 – ф. 1 (яра форма), 19 – ф. 2 (яра форма), 20 – ф. 3 (яра форма),  
21 – ф. ЕОРЖЯФ‐1 (яра форма), 22 – ф. ЕОРЖЯФ‐2 (яра форма), 23 – ф. ЕОРЖЯФ‐3 

(яра форма), 24 – ф.  ЕОРЖЯФ‐4 (яра форма), 25 – ф. ЕОРЖЯФ‐5 (яра форма),  
26 – ф ЕОРЖЯФД (яра форма), 27 – ф. ЕОРЖЯФЧ (яра форма). 

 

у  решти  представників  –  еліптичної.  Насінна  ніжка  щільно  притиснута  до 

насінини, вирівняна або її верхівка відведена в бік. 

 
4. 3. Біохімічні особливості рослин різних генотипів Сamelina sativa  

Біохімічні показники, поряд з урожайними даними, є найважливішими 

під час оцінки якісних і кількісних характеристик рослин. Завдяки біохімічним 

критеріям  можна  встановити  закономірності  проходження  продукційного 

процесу у рослин та накопичення вторинних метаболітів під час вегетування. 

Ці  критерії  дозволяють  також  оцінити  стан  рослин  залежно  від  впливу 

біотичних  та  абіотичних  факторів.  Аналіз  літератури  і  результати 

експериментальних  досліджень  свідчать  про  цінний  біохімічний  склад 

рослин, насіння та фітопродукції рижію.   
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З  метою  оцінки  біохімічних  показників  рослин  та  насіння  рижію  і 

відбору найцінніших  генотипів  проведено дослідження  з  визначення  вмісту 

основних  органічних  речовин  у  надземній  фітомасі  двадцяти  п’яти  різних 

біотипів  у  фазі  плодоношення‐дозрівання.  На  основі  проведеного  статис‐

тичного  аналізу  отриманих  результатів  виділено  перспективні  групи  рослин 

за рівнем вмісту структурно‐функціональних і біологічно активних сполук. 

Виявлено, що усі  генотипи С.  sativa активно накопичують суху речови‐

ну, а це свідчить про сприятливість умов довкілля для проходження фізіоло‐

го‐біохімічних  процесів  в  організмі.  У  ході  аналізу  отриманих  даних  (рис. 

4. 11) виділено наступні групи рослин щодо вмісту абсолютно сухої речовини: 

високий  (понад  30%)  –  14  генотипів;  середній  (від 27 до 30 %)  –  9  генотипів; 

низький (до 27%) – 2 генотипи. Найвищим вмістом абсолютно сухої речовини 

вирізнялась ф. ЕОРЖЯФ‐1 – 34,57%, найменшим – c. Сунесон – 25,53%. 

 

Рис. 4. 11. Вміст абсолютно сухої речовини у надземній фітомасі рослин 
різних генотипів Сamelina sativa у фазі плодоношення‐дозрівання 
 
Аналіз вмісту загальних цукрів у надземній фітомасі рослин (рис. 4. 12) 

дозволив розподілити генотипи на наступні групи: дуже високий (понад 10 %) 

– 1 генотип; високий (від 8 до 10 %) – 5 генотипів; середній (від 4 до 8 %) – 16 

генотипів; низький (до 4 %) – 3 генотипи.  
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Рис. 4. 12. Загальний вміст цукрів у надземній фітомасі рослин різних 
генотипів Сamelina sativa у фазі плодоношення‐дозрівання 

 

Найвищим  вмістом  вуглеводнів  з‐поміж  усіх  генотипів  виявилась 

форма 1 – 10,80%, найменшим форма ЕОРЖЯФД – 2,80%. 

Поряд  із  загальними  цукрами  вивчено  вміст  моноцукрів  (рис.  4. 13), 

який  дозволив  розподілити  досліджувані  генотипи  на  наступні  групи:  дуже 

високий  (понад  6 %)  –  2  генотипи;  високий  (від  4,5  до  6 %)  –  5  генотипів; 

середній (від 3 до 4,5 %) – 10 генотипів; низький (до 3 %) – 8 генотипів. Серед 

досліджуваних  рослин  найвищий  вміст  моноцукрів  встановлено  у  ф.  2  – 

6,66 %, найменший у c. Сунесон – 2,46 %. 

 

Рис. 4. 13. Вміст моноцукрів у надземній фітомасі рослин різних 
генотипів Сamelina sativa у фазі плодоношення‐дозрівання 
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Дослідження  вмісту  аскорбінової  кислоти  також  продемонстрував 

відмінність динаміки її накопичення у рослин (рис. 4. 14)  і дозволив виокре‐

мити наступні їх групи: генотипи з високим вмістом (понад 100 мг%) – 5 форм 

та  1  сорт;  середнім  (від  70  до  100  мг%)  –  3  сорти  та  5  форм;  низький  (до 

70 мг%) – 8 форм і 4 сорти. Найвищий вміст вітаміну С зафіксовано у ф. 7‐ТФР 

– 123,84 мг%, найменший – у ф. ЕОРЖЯФ‐1 – 38,51 мг%. 

 

Рис. 4. 14. Вміст аскорбінової кислоти у надземній фітомасі рослин 
різних генотипів Сamelina sativa у фазі плодоношення‐дозрівання 
 
Варто  зазначити,  що  значна  кількість  генотипів  С.  sativa  активно 

накопичують  дубильні  речовини  (рис. 4. 15).  Біохімічні  дослідження 

надземної  фітомаси  дозволили  простежити  динаміку  їх  акумулювання  і 

розподілити інтродуценти на наступні групи щодо вмісту дубильних речовин: 

високий (понад 2 %) – 10 форм та 6 сортів; середній (від 1 до 2 %) – 6 форм та 

2 сорти; низький (до 1 %) – 1 форма. Найвищим вмістом дубильних речовин 

характеризувалась ф. 2‐ТФР – 3,92 %, найменшим – ф. 2 – 0,98 %. 
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Рис. 4. 15. Вміст дубильних речовин у надземній фітомасі рослин різних 
генотипів Сamelina sativa у фазі плодоношення‐дозрівання 

 
Установлено,  що  усі  досліджувані  інтродуценти  С.  sativa  майже 

однаково накопичують у надземній частині вільний азот. Статистичний аналіз 

отриманих даних дозволив виявити відмінності у накопиченні вільного азоту 

в  цих  генотипів  та  розподілити  їх  на  дві  групи:  рослини  з  високим  вмістом 

(понад  2 %)  –  23  таксони;  середнім  вмістом  (від  1  до  2 %)  –  дві  форми. 

Найвищий вміст азоту зафіксовано у рослин с. Міраж – 2,90 %, найменший – у 

ф. ЕОРЖЯФ‐2 – 1,98 % (рис. 4. 16). 

 

Рис. 4. 16. Вміст вільного азоту в надземній фітомасі рослин різних 
генотипів Сamelina sativa у фазі плодоношення‐дозрівання 
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Вивчено  титровану  кислотність  рослинної  сировини  та  вміст 

мінеральних  речовин  на  основі  чого  встановлено,  що  рослини  майже  не 

відрізняються за динамікою їхнього накопичення (рис. 4. 17). За титрованою 

кислотністю найвищим вмістом виділявся с. Колондайк (2,05%), золи – рижій 

дрібноплідний (8,06 %), кальцію – c. Сунесон (2,33 %), фосфору – ф. ЕОРЖЯФ‐

1 (1,89 %). 

 
Рис. 4. 17. Титрована кислотність і вміст мінеральних речовин у 

надземній фітомасі рослин різних генотипів Сamelina sativa у фазі 
плодоношення‐дозрівання 

 
Важливим для  будь‐якої  олійної  культури  є  визначення  вмісту  ліпідів, 

що  дозволяє  виокремити  найбільш  перспективні  генотипи  для  їх  широкого 

впровадження  у  виробництво.  Проведено  оцінку  олійності  надземної 

фітомаси  найбільш  перспективних  генотипів  С.  sativa,  в  ході  чого 

виокремлено  наступні  групи  за  олійністю  рослин:  високий  (понад  10 %)  – 

с. Колондайк  і  с. Міраж;  середній  (від  7  до  10 %)  –  ф.  ЕОРЖЯФ‐4  та 

ф. ЕОРЖЯФ‐1; низький (до 7 %) – ф. ЕОРЖЯФ‐3 й ф. 2. Найвищий вміст ліпідів 

фіксували  у  с. Колондайк  –  12,51 %,  найменший  –  у  ф.  ЕОРЖЯФ‐3  –  6,51 % 

(рис. 4. 18). 
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Рис. 4. 18. Вміст ліпідів у надземній фітомасі рослин різних генотипів 
Сamelina sativa у фазу плодоношення‐дозрівання 

Одним із найважливіших показників продуктивності олійної культури є 

виробництво  олії  з  одиниці  маси  та  з  урожаю.  В  насінні  рижію  вміст  олії 

широко  варіювався  під  час  досліджень  у  різних  частинах  світу,  при  цьому 

загальний середній вміст олії  становив близько 36 %. Найвищий вміст олії  у 

насінні було встановлено у  межах 39,8–45,7 % у Чилі (Berti et al., 2011), 45 % в 

Арізоні, США (Hunsaker et al., 2012)  і 38–43 %, на заході Канади (Gugel et al., 

2006 ). Низький вміст олії у насінні рижію відзначено в Неваді, США – від 25,7 

до 31,8 % (Lohaus et al., 2020).  

Результати  багаторічних  досліджень  свідчать  про  те,  що  вміст  олії  у 

насінні залежить від генотипових, сортових особливостей рослин, але суттєво 

змінюється від місця проведення досліджень, типу ґрунтів, умов вегетації за 

роками, агробіотехнологій та використання біологічно активних стимуляторів 

росту,  мікробіологічних  препаратів  тощо.  Серед  численних  генотипів 

відібрано  форми  з  найвищим  вмістом  ліпідів  (36,04‐43,89 %)  у  насінні  та  з 

великим виходом урожаю (до 1000 кг/га).  

с. Колондайк с. Міраж ф. ЕОРЖЯФ‐4 ф. ЕОРЖЯФ‐1 ф. ЕОРЖЯФ‐3 ф. 2 

високий середній низький

12,51
10,81

7,04 7,64
6,51 6,90%



89 

За результатами досліджень, проведених за вегетаційний період 2023 

року, найвищий вміст олії  у насінні  становив 39,48 %  (с. Руно), а найнижчий 

(24,09 % ) – у форми 6‐ТФР ( рис. 4. 19).  

 

Рис. 4. 19. Вміст олії у насінні  різних генотипів Сamelina sativa  

Зважаючи  на  результати  проведених  досліджень  із  визначення 

олійності насіння рижію у різні періоди, запропоновано розподіл генотипів на 

наступні  групи:  1)  дуже  низький  (вміст  олії  до  24 %);  низький  (25‐29 %,) 

середній (30‐35 %), високий (36‐40 %), дуже високий (понад 41 %).  
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4. 4. Біохімічний склад олії рижію посівного та гірчиці ефіопської 

  Підвищення  продуктивності  економічно  важливих  олійних  культур 

родини  Brassicaceae  сприятиме  створенню  збалансованих  харчових 

продуктів,  цінних  лікарських  засобів  на  основі  їх  ліпідів  та  олій  технічного 

призначення.  

На  сьогодні  актуальним  є  запровадження  у  сільськогосподарське 

виробництво  нетрадиційних  та  нових  високопродуктивних  олійних  рослин, 

здатних  не  лише  конкурувати  з  ріпаком,  але  й  переважати  його  за 

важливими  характеристиками  як  джерела  якісної  харчової  олії.  До  таких 

перспективних  олійних  культур  можна  віднести  рижій  посівний  (Camelina 

sativa) та гірчицю ефіопську (Brassica carinata) родини Brassicaceae. 

За  результатами  досліджень  проведено  аналіз  олії  генетично 

різноманітних  сортів  і  селекційних ліній рижію – 26  зразків,  а  також  гірчиці 

ефіопської – 8 зразків.  

Проведено скринінг літературних  та  інформаційних джерел, підібрано 

й опрацьовано методики. Відомо, що найбільш достовірними показниками, 

які  характеризують  якість  і  автентичність  олії  та  олійно‐жирової  сировини  є 

жирнокислотний та ацилгліцериновий склади, а також параметри стеринової 

фракції, які визначають хроматографічними і спектрометричними методами. 

Методика  визначення  жирнокислотного  складу  рослинних  олій.  Для 

проведення аналізу жирно‐кислотного складу рослинних олій взято за основу 

методичні підходи в аналізі молочного жиру та його сумішей із чужорідними 

рослинними оліями за вмістом транс‐ізомерів ненасичених жирних кислот і CLA.  

Використано  іноземні  наукові  праці  та  чинний  НД  щодо  аналізу  чистих 

рослинних  олій  і жирів,  адже  у  вітчизняних  чинних НД  розділення  ізомерів 

жирних кислот не враховано (Animal and vegetable …, 1988, 2014, 2015, 2017, 

2018; Dionisi et al., 2002; Жир молочний. Виявлення …, 2002; Жири та олії …, 

2003;  Рудаков,  2004;  Anhydrous  milk  …,  2006;  Destaillats  et  al.,  2007;  Draft 
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International  Standart …, 2008; Жири тваринні …, 2010; Milk  fat …, 2010; Жир 

молочний. Метод …, 2011; Milk fat – Determination …, 2013; Жирнокислотний, 

стериновий …, 2020). 

Методика проведення аналізу жирнокислотного складу рослинних олій 

із розділенням ізомерів ненасичених жирних кислот включає такі етапи: 

– аналіз проб зразків методом капілярної газової хроматографії; 

– ідентифікація жирних кислот. 

Зразок  рослинної  олії  (у  віалі)  піддавали  хроматографічному  аналізу. 

Аналізували  на  газовому  хроматографі  НР  6890  фірми  HEWLETT  PACKARD  з 

автоматичним  інжектором з діленням потоку  (split), оснащеному термостатом 

колонки з програмуванням температури, полум’яно‐іонізаційним детектором і 

комп’ютерною  системою  зі  спеціальним  програмним  забезпеченням  для 

автоматичного інтеґрування та ідентифікації піків ChemStation Ver.A.06.03. 

Для газохроматографічного розділення підібрано такі оптимальні умови: 

Програма  термостата  колонки:  60°С  (7,5хв),  4°С/хв150°С  (10хв), 

3°С/хв180°С  (5хв), 3°С/хв190°С  (2хв), 3°С/хв230°С  (2хв), 4°С/хв245°С 

(6,59хв). 

Інжекційна система з діленням потоку (split): початкова температура – 

280°С;  тиск  –  33,41 psi;  коефіцієнт  ділення  потоку  (split  ratio)  –  100:1;  потік 

ділення – 119,9 мл/хв; загальний потік – 123,9 мл/хв.  

Газ‐носій – гелій; потік газу‐носія – 1,2 мл/хв. 

Капілярна колонка SP‐2560 з високополярною нерухомою фазою – біс‐

цианопропілполісилоксаном (незв’язаним): довжина 100 м, діаметр 0,25 мм, 

товщина плівки 0,2 мкм, з максимальною робочою температурою 250°С. 

Детектор  полум’яно‐іонізаційний  (ПІД):  температура  –  290°С;  потік 

водню –  30 мл/хв;  потік  повітря  –  300 мл/хв;  допоміжний потік  –  20 мл/хв; 

допоміжний газ – азот. 

Об’єм введеної проби – 1,0 мкл. 
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Концентрація проби – 20,0 мг/мл. 

Загальний час аналізу – 86,01 хв. 

Жирні кислоти  ідентифікували за часом утримання відповідно до часу 

утримання  стандартної  (еталонної)  суміші  (метод  порівняння).  Кількісний 

склад  суміші  визначили методом внутрішньої нормалізації,  коли сума площ 

всіх піків приймається за 100% і концентрація будь‐якого компонента проби 

розраховується як відносна площа піка  

Ci (%) = (SiКі/ ∑SiКі) 100,          

де, Si – площа відповідного піка;  

Кі (або Rf) – калібрувальний коефіцієнт;  

∑SiКі – сума добутків площ піків на відносні поправочні коефіцієнти для 

усіх піків хроматограми. 

Оптимальні  умови  розділення  жирних  кислот,  у  тому  числі  і  їхніх 

ізомерів,  було  підтверджено  за  допомогою  калібрування  колонки 

стандартною сумішшю метилових ефірів жирних кислот, шляхом визначення 

абсолютного  та  відносного  Rf  і  відгуку  (чутливості)  ПІД  для  кожного 

компонента  стандартної  суміші,  що  виражається  значенням  FID‐factor  за 

формулою  

FID = М/ (nx‐1) (AWc) (FID16:0),        

де, М – молекулярна маса метилових ефірів жирних кислот;  

(nx ‐ 1) – число атомів С в жирній кислоті; 

AWc – молекулярна маса карбону (12,01);  

FID16:0  –  коефіцієнт  кореляції  для  пальмітинової  кислоти(16:0),  що 

дорівнює 1,407.  

Абсолютний Rf визначається за формулою:  

Rf = S1MR2/ S2MR1,                        

де, S1 і S2 – площі піків двох розділених компонентів;  

MR1 і MR2 – їхні відносні масові частки.  
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Відносний Rf визначається відносно піку. 

Результати досліджень та  їх обговорення. Важливу роль у визначенні 

напряму  використання  олії  відіграє  її  жирно‐кислотний  склад.  Проведено 

біохімічні дослідження з визначення жирно‐кислотного складу рослинних 

олій.  Біохімічному  аналізу  підлягали  зразки  жирної  олії  представників 

родини  Brassicaceae.  Ми  дослідили  жирнокислотний  склад  олій  з  насіння 

різних форм Camelina sativa і Brassica carinata, внаслідок чого проаналізовано 

26  зразків олії рижію  (Додаток Б)  та 8  зразків жирної олії  гірчиці ефіопської 

(Додаток  В).  Для  їхньої  ідентифікації  використано  дані  моніторингу, 

отриманих шляхом наукових досліджень олії рижію з різних регіонів України 

(табл.  4.1).  Для  ідентифікації  олії  гірчиці  використано  дані  моніторингу  за 

стандартизованим  методом  (табл.  4.  2).  Встановлено,  що  отримані  дані  не 

перевищують діапазони коливань вмісту жирних кислот. 

Таблиця 4. 1 
Жирнокислотний склад олії рижію (Camelina sativa) 

Найменування  
та позначення кислоти 

Відносна масова частка жирних кислот,   
% від загальної суми 

Ттиповий  
вміст 

ожливі коливання 
від  до 

1  2 3 4
Міристинова (С14:0)  0,06 0 0,1
Пальмітинова (С16:0)  5,7 5,0 7,3
Пальмітолеїнова (С16:1)  0,1 0,1 1,6
Стеаринова (С18:0)  2,4 2,0 3,9
Олеїнова (С18:1)  16,9 12,0  19,3
Лінолева (С 18:2)  19,3 15,5  21,0
Ліноленова (С18:3)  33,9 22,8  33,9
Арахінова (С 20:0)  1,3 1,2 2,5
Гондоїнова (С 20:1)  14,1 13,3  16,0
Ейкозадієнова (С20:2)  1,8 1,7 2,9
Ейкозатрієнова (С20:3)  1,2 0,4 1,6
Бегенова (С 22:0)  0,3 0,2 1,1
Ерукова (С22:1)  2,7 1,5 3,0
Насичені  9,8  9,0  14,9 
Мононенасичені  33,8  30,0  36,6 
Поліненасичені  56,1  42,9  56,1 
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Таблиця 4. 2 

Жирнокислотний склад олії гірчичної за ДСТУ 4598 

Найменування та позначення  
кислоти 

Відносна масова частка жирних кислот,  
% від загальної суми 

Типовий вміст  Можливі коливання 
від  до 

з білої  
гірчиці 

з чорної 
гірчиці 

Міристинова (С14:0)  0,06  0,07  0,0  1,0 
Пальмітинова (С16:0)  2,73  3,26  0,5  4,5 
Пальмітолеїнова (С16:1)  0,12  0,18  0,0  0,5 
Стеаринова (С18:0)  0,90  1,44  0,5  2,0 
Олеїнова (С18:1)  19,65  21,7  8,0  23,0 
Лінолева (С 18:2)  8,70  21,7  10,0  24,0 
Ліноленова (С18:3)  11,10  12,2  6,0  18,0 
Арахінова (С 20:0)  0,63  0,95  0,0  1,5 
Гондоїнова (С 20:1)  9,24  12,05  5,0  13,0 
Ейкозадієнова (С20:2)  0,30  0,99  0,0  1,0 
Бегенова (С 22:0)  0,54  0,5  0,2  2,5 
Ерукова (С22:1)  42,39  22,53  22,0  50,0 
Докозадієнова (С22:2)  0,30  0,39  0,0  1,0 
Лігноцеринова (С 24:0)  0,34  0,32  0,0  0,5 
Нервонова (С24:1)  2,68  1,19  0,5  2,5 
Насичені  5,2  6,5  1,2  12,0 
Мононенасичені  74,1  57,7  35,5  89,0 
Поліненасичені  20,4  35,3  16,0  44,0 

 

Найбільш  достовірними  показниками,  які  характеризують  якість  і 

автентичність  олії  й  олійно‐жирової  сировини  є  жирнокислотний  і 

ацилгліцериновий  склади,  а  також  параметри  стеринової  фракції,  які 

визначають хроматографічними та спектрометричними методами. 

Як свідчать результати порівняльного аналізу за різні періоди досліджень 

для  всіх  форм  рослин  Camelina  sativa  характерним  є  високий  вміст  ліноле‐

нової (від 31,4 до 35,6 %), лінолевої (від 19,8 до 24,6 %), олеїнової (від 11,9 до 

18,5 %),  гондоїнової  (11‐ейкозенової)  (від 9,5 до 12,9 %),  пальмітинової  (9,5‐

11,4 %) жирних кислот.  

Поліненасичена  ліноленова  кислота,  що  належить  до  ω‐3,  у 
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досліджуваних  форм  і  сортів  міститься  у  значній  кількості,  найбільший 

показник яких наближався до 36 % від суми жирних кислот. 

Лінолева кислота відносена до так званих незамінних жирних кислот, не‐

обхідних для нормальної життєдіяльності організму. У людини вона засвою‐

ється  з  тригліцеридів  та  фосфатидів.  Найбільший  її  вміст  становив  24,7 %. 

Важливу  функцію  має  також  пальмітинова  кислота  –  це  основна  насичена 

жирна  кислота,  що  міститься  в  грудному  молоці  та  дитячих  сумішах  (до 

45‐50 %). У досліджуваних нами оліях найбільший  її  вміст виявлено на рівні 

11,4%.  
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РОЗДІЛ 5. 

БІОЛОГО‐МОРФОЛОГІЧНІ, БІОХІМІЧНІ ОСОБЛИВОСТІ  
ТА ПРОДУКТИВНІСТЬ МОБІЛІЗОВАНИХ І СТВОРЕНИХ ГЕНОТИПІВ 
РОСЛИН  BRASSICA CARINATA A. BRAUN В УМОВАХ ІНТРОДУКЦІЇ  

У ПРАВОБЕРЕЖНОМУ ЛІСОСТЕПУ УКРАЇНИ 
 
 
 

5.1. Ростові особливості та продуктивність  
мобілізованих і створених генотипів рослин Brassica carinata  

 

Внаслідок  проведених  інтродукційних,  генетико‐селекційних  і 

біотехнологічних  досліджень  зібрано  цінну  генофондову  колекцію  капусти 

кільоподібної або гірчиці ефіопської (Brassica carinata) – близько 30 зразків. 

За період виконання роботи з мобілізованого та створеного генофонду  

Brassica  carinata  ми  відібрали  17  перспективних  зразків  для  проведення 

подальших  комплексних  досліджень  і  визначення  ростового,  фотосинтетич‐

ного та біопродуктивного потенціалу рослин. Протягом багаторічного періоду 

у відділі культурної флори Національного ботанічного саду імені М.М. Гриш‐

ка НАН України створена унікальна за якісним і кількісним складом колекція 

олійних  рослин,  яка  включає  понад  200  таксонів.  У  цьому  колекційному 

фонді  є  генотипова  колекція  Camelina  sativa,  яка  нараховує  близько  40 

зразків.  На  основі  цього  вихідного  матеріалу  різними  селекційними 

методами виведено понад 10 ярих та 5 озимих форм рослин. Слід зазначити, 

що  у  2024  році  до  Державної  служби  з  сортовипробування  вперше  було 

передано  сорт Новинка капусти кільоподібної  (номер  заяви № 2025686001) 

та Лідер рижію посівного озимої форми (№ 23043001 від 23.01.2024). 

У  ході  досліджень  були  виявлені  морфолого‐біологічні  особливості 

різних  генотипів  рослин  відібраних  форм  капусти  кільоподібної  або  гірчиці 

ефіопської  (Brassica  carinata).  Встановлено, що рослини проходять  усі  етапи 

органогенезу за один вегетаційний період (сходи, перший справжній листок, 
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розетка,  стеблування, бутонізація,  квітування, плодоношення  та дозрівання) 

(рис. 5. 1‐5. 4). Тривалість вегетаційного періоду становить від 115 до 123 діб 

залежно від генотипу. 

 
Рис. 5. 1. Фаза росту і розвитку рослин Brassica carinata: розетка листків 

 

 
Рис. 5. 2. Фаза росту і розвитку рослин Brassica carinata: 

початок формування генеративних пагонів 
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Рис. 5. 3.Фаза росту і розвитку рослин Brassica carinata: 

початок масового квітування 
 
 

 
Рис. 5. 4. Фаза росту і розвитку рослин Brassica carinata: 

 дозрівання насіння 
 

При  невчасному  збиранні  насіння  рослин  Brassica  carinata  частина  його 

осипається і дружно проростає: у вересні‐жовтні утворюється суцільний травос‐

тій (рис. 5. 5.). Проте пізніше, з настанням морозів, рослини повністю гинуть.  
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Рис. 5. 5. Самосів насіння рослин Brassica carinata після збирання 

врожаю  (вересень‐жовтень) 

 
Вивчення  біометричних  показників  на  початкових  етапах  онтогенезу 

рослин  дозволяє  встановити  темпи  росту  надземних  та  підземних 

вегетативних органів. У зв’язку з цим були досліджені лінійні розміри пагонів 

та  кореня  восьми  природних  форм  рослин  Brassica  carinata  і  дев’яти 

відібраних  селекційно‐генетичних  зразків  у  різні  фази  розвитку  рослин.  За 

результатами аналізу отриманих даних щодо лінійних розмірів рослин у фазі 

стеблування  (рис.  5.6,  5.7)  встановлено,  що  різниця  між  інтенсивністю 

наростання  надземної  частини  досліджуваних  генотипів  є  значною,  що 

дозволяє  поділити  їх  на  три  групи:  високорослі  (понад  51  см)  до  них 

належать:  BC SCF‐9,  BC SCF‐7,  BC SCF‐3,  BC SCF‐2,  BC SCF‐4  (представлені 

зразками лише селекційно‐генетичних рослин); середньорослі  (від 31 см до 

50 см): BC NPF‐4, BC NPF‐2, BC NPF‐1, BC NPF‐3, BC SCF‐1, BC SCF‐5, BC SCF‐8, BC 

SCF‐6;  низькорослі  (до  30  см):  BC  NPF‐7,  BC  NPF‐6,  BC  NPF‐5,  BC  NPF‐8 

(представлені виключно рослинами природного походження). 
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Рис. 5. 6. Лінійні розміри надземної та підземної частин різних генотипів 
рослин Brassica carinata природного походження у фазі стеблування 

 

 
Рис. 5. 7. Лінійні розміри надземної та підземної частини селекційно‐

генетичних форм рослин Brassica carinata  у фазі стеблування 
 

Щодо  інтенсивності  наростання  головного  кореня  також  відмічені 

відмінності  та  здійснений  розподіл  досліджуваних  форм  за  довжиною  на 

наступні  групи:  найдовші  (понад  17,1  см)  –  BC  SCF‐5,  BC  SCF‐8,  BC  SCF‐7,  BC 
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SCF‐2,  BC  SCF‐9,  BC  SCF‐4  (виключно  рослини  селекційно‐генетичного 

походження); середньої довжини (від 13,1 см до 17 см) – BC NPF‐3, BC NPF‐7, 

BC SCF‐1, BC SCF‐3, BC NPF‐6; найкоротші  (до 13 см) – BC NPF‐4, BC NPF‐5, BC 

NPF‐2, BC SCF‐6, BC NPF‐1, BC NPF‐8. 

Виявлено, що генотип рослин, котрий має найвищі показники росту як 

стебла, так і кореня є BC SCF‐4. Найнижчі показники забезпечували генотипи 

BC NPF‐8  за  ростом  стебла  та  BC NPF‐4  –  за  розміром  кореня.  Різниця  між 

найбільшим  і  найменшим  значеннями  росту  складає:  стебла  –  43,8  см 

(63,66%), кореня – 9,5 см (49,73 %). 

Середній  показник  лінійного  росту  рослин  селекційно‐генетичних 

зразків складає 52,3 см, що значно переважає (на 20,42 см або на 39 %) цей 

же показник у природних форм рослин, який становить 31,88 см. Так само і 

середній розмір лінійного росту кореня селекційно‐генетичних форм рослин, 

який  досягає  16,83  см,  перевищує  (на  6,11  см  або  на  36  %)  відповідний 

показник  рослин природного  походження,  який дорівнює  10,72 см.  Відомо, 

що  в  умовах  Ефіопії  середній  розмір  кореня  на  20  добу  вегетації  досягає 

6,11 см (Husen, Iqbal, Aref, 2014). 

Таким  чином,  можна  зробити  висновок,  що  рослини,  створені 

селекційно‐генетичним шляхом забезпечують значно кращі результати росту 

як надземної частини так і кореневої системи у фазі стеблування. Також варто 

зазначити,  що  даних  із  дослідження  інтенсивності  наростання  лінійних 

розмірів стебла та кореня у наявній науковій літературі не знайдено. 

Окрім  лінійних  розмірів  пагонів  та  кореня  важливе  значення  має 

утворення  листків,  які  формують  основну  площу  фотосинтетичної  поверхні 

рослини і, як наслідок, забезпечують її продуктивність (рис. 5. 8, 5. 9).  
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Рис. 5. 8. Кількість листків різних генотипів рослин 

 Brassica carinata природного походження у фазі стеблування 
 

 
Рис. 5. 9. Кількість листків у селекційно‐генетичних 
 форм рослин Brassica carinata  у фазі стеблування 

 

Аналізуючи  отримані  дані  варто  зазначити,  що  різниця  у  кількості 

листків  у  фазі  стеблування  була  незначною  (між  найбільшим  і  найменшим 

значеннями  складає  4  шт.,  що  становить  36 %),  проте  більшість  значень 

знаходяться  ближче  до  середнього  показника.  Середні  значення  кількості 

листків  на  селекційно‐генетичних  формах  рослин  та  рослинах  природного 

походження є майже ідентичними; ці значення становлять відповідно 9,1 та 

9,4 шт./рослину, а різниця між ними складає 3,2 %. 
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З огляду на це нами здійснено розподіл (медіаною вибірки) природних 

та селекційно‐генетичних форм рослин Brassica carinata A. Braun на дві групи: 

представники з більшою кількістю листків  (> 9,4 листки): BC SCF‐5, BC SCF‐8, 

BC NPF‐4, BC NPF‐1, BC NPF‐7 BC SCF‐7, BC NPF‐5 BC SCF‐9, BC NPF‐3; з меншою 

кількістю листків  (менше 9,4 листки): BC SCF‐1, BC NPF‐6, BC NPF‐2, BC SCF‐6, 

BC SCF‐2 BC SCF‐4, BC NPF‐8, BC SCF‐3. 

Аналізуючи  ці  дві  групи,  слід  зазначити,  що  рослини  природного  та 

селекційно‐генетичного походження розподілені рівномірно і не мають явної 

переваги  в  цьому  показнику.  Порівнюючи  отримані  результати  з  даними, 

отриманими  Husen,  Iqbal,  Aref,  (2014)  в  Ефіопії,  варто  відмітити  те,  що  в 

умовах України середній показник листкоутворення вищий (майже на 15 %). 

Досліджено  морфометричні  показники  листків  природних  та 

селекційно‐генетичних  форм  рослин  Brassica  carinata  (рис.  5. 10,  5. 11),  що 

дозволило  встановити  ряд  відмінностей  і  здійснити  їхній  розподіл  за 

шириною листків на три групи: широколисті (понад 7 см) – BC NPF‐6, BC SCF‐1, 

BC NPF‐1, BC SCF‐8, BC NPF‐4; середньої ширини (від 6,1 до 7 см) – BC NPF‐7, 

BC  SCF‐2,  BC  SCF‐5,  BC  NPF‐3,  BC  NPF‐5,  BC  SCF‐4,  BC  NPF‐2,  BC  SCF‐3; 

вузьколисті (до 6 см) – BC SCF‐9, BC NPF‐8, BC SCF‐7, BC SCF‐6. 

 
Рис. 5. 10. Морфометричні показники листків різних генотипів  

рослин Brassica carinata природного походження у фазі стеблування 
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Рис. 5. 11. Морфометричні показники листків у  

селекційно‐генетичних форм рослин Brassica carinata  у фазі стеблування 
 

Детальний аналіз цих груп рослин дозволив виявити, що за показником 

ширини листка рослини різного походження розподілені досить рівномірно, 

хоча варто зазначити, що природні генотипи рослин більш схильні формувати 

широкі листки. 

За довжиною листкової пластинки розподілено рослини на  три  групи: 

довголисті  (понад 10 см) – BC SCF‐8, BC NPF‐5, BC NPF‐4, BC SCF‐1, BC NPF‐1; 

листки середньої довжини  (від 8,1 до 10 см) – BC SCF‐4, BC SCF‐2, BC NPF‐3, 

BC SCF‐5,  BC  NPF‐6,  BC  SCF‐9,  BC  NPF‐8,  BC  SCF‐3,  BC  SCF‐7,  BC  NPF‐2;  

коротколисті (до 8 см) – BC SCF‐6, BC NPF‐7. 

При аналізі цих груп було помічено, що за показником довжини листка 

тенденції  дисперсії  рослин  різного  походження  подібні  до  ширини  листка, 

варто  зазначити,  що  довжина  та  ширина  листка  корелюється  між  собою,  а 

рослини з короткими листками також мають і вузькі листки. 

Лінійні  розміри  черешка  листків  різних  генотипів  були  близькі,  але 

мали незначні відмінності, у зв’язку з чим було виділено три групи рослин: з 

довгим  черешком  (понад  7,5 см)  –  BC  SCF‐2,  BC  SCF‐4,  BC  NPF‐6,  BC  SCF‐1, 

BC SCF‐8,  BC  NPF‐4;  з  черешком  середньої  довжини  (від  6,0  до  7,5 см): 
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BC NPF 1, BC NPF‐2, BC SCF‐5, BC NPF‐3, BC NPF‐5, BC NPF‐7, BC SCF‐9, BC SCF‐3, 

BC NPF‐8; з коротким черешком (до 6,0 см): BC SCF‐6, BC SCF‐7.  

Дослідження  біометричних  показників  рослин  у  процесі  подальшого 

розвитку  показало,  що  у  більшості  ростові  параметри  у  фазі  квітування  є 

стабільними,  оскільки  уповільнюється  активний  ріст  і  усі  процеси 

спрямовуються на формування генеративних органів (рис. 5. 12, 5. 13).  

 

 
Рис. 5. 12. Висота і довжина кореня різних генотипів 

 рослин Brassica carinata природного походження у фазі квітування 
 

 
Рис. 5.13. Висота і довжина кореня селекційно‐генетичних форм рослин 

Brassica carinata у фазі квітування 
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Виявлено, що різниця за висотою різних генотипів є досить значною. За 

цим же показником визначено три групи рослин: високорослі (понад 135 см) 

– BC NPF‐5, BC SCF‐2, BC NPF‐7, BC SCF‐1, BC NPF‐4; середньорослі (від 121 до 

135 см) – BC NPF‐6, BC SCF‐5, BC SCF‐3, BC NPF‐2 BC SCF‐4, BC NPF‐8; низько‐

рослі (до 120 см) – BC SCF‐6, BC SCF‐7, BC NPF‐1, BC SCF‐8, BC SCF‐9, BC NPF‐3. 

Варто  зазначити, що  селекційно‐генетичні форми рослин  зосереджені 

переважно в низькорослій та середньорослій групі. Висота рослин є частково 

обернено‐пропорційною до темпів росту, де рослини селекційно‐гібридного 

походження однозначно показували набагато виші результати, ніж рослини 

природного походження. Також варто зазначити, що генотип BC SCF‐2 пока‐

зує прямо‐пропорційну залежність як високорослості так і швидкорослості. 

Порівнюючи  отримані  результати  за  висотою  рослин  із  аналогічними 

даними,  отриманими  в  дослідженнях  Seepaul  et  al.  (2021),  виявлено,  що  в 

умовах  НБС  імені  М.М.  Гришка  НАН  України  рослини  Brassica  carinata 

забезпечують вищі ростові показники (понад 8,6%). 

За довжиною кореня, у фазі квітування, рослини також розподілено на 

три групи: з довгим коренем (понад 21 см) – BC SCF‐8, BC SCF‐1, BC NPF‐5, BC 

NPF‐2, BC NPF‐1 BC NPF‐4; із середньою довжиною кореня (від 18 до 21 см) – 

BC NPF‐6, BC SCF‐2, BC NPF‐7, BC SCF‐7, BC SCF‐5, BC SCF‐4, BC SCF‐3, BC NPF‐8; з 

коротким коренем  (до 18  см): BC SCF‐6, BC SCF‐9, BC NPF‐3. Даний розподіл 

демонструє, що серед рослин із найдовшим коренем переважають рослини 

природного  походження,  що  є  майже  протилежним  відносно  показника 

темпу росту кореня. 

Генотипом  рослин,  що  має  найбільшу  висоту  і  довжину  кореня 

виявився  BC  NFP‐4,  а  найнижчу  –  BC SCF‐6.  Різниця  між  найбільшим  та 

найменшим значенням висоти складає 67,6 см (42,89 %), а розмірів кореня – 

12,1 см (47,27 %). 
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Середній показник висоти селекційно‐генетичних форм рослин складає 

123,87 см, що менше за ідентичний показник у природних рослин (на 8,68 см 

чи 6,56 %), який досягає 132,55 см.  

Аналогічна  ситуація  з  середнім  показником  довжини  кореня 

селекційно‐генетичних  форм  рослин,  який  складає  19,23  см  і  є  меншим  за 

відповідний  показник  рослин  природного  походження,  який  становить 

21,04 см (на 1,8 см чи на 8,6 % більше). 

Дослідження  інтенсивності  наростання  стебла,  а  особливо  його 

діаметру при основі є важливим показником для оцінки стійкості культур до 

полягання, що дозволить у майбутніх селекційних відборах зосередити увагу 

на  найбільш  перспективних  генотипах  (Мазур,  2020).  Таким  чином,  у  фазі 

квітування  було  досліджено  показники  діаметру  стебла  (рис.  5.  14,  5. 15) 

рослин і здійснено розподіл на наступні групи: рослини з великим діаметром 

(понад  7  мм)  –  BC  NPF‐4,  BC  NPF‐3,  BC  NPF‐6,  BC  NPF‐5,  BC  NPF‐8  (група 

представлена  лише  рослинами  природного  походження);  з  середнім 

діаметром  (від  6,1  мм  до  7  мм)  –  BC  NPF‐2,  BC  NPF‐7,  BC  SCF‐6,  BC  NPF‐1, 

BC SCF‐2, BC SCF‐1; з малим діаметром (до 6 мм) – BC SCF‐9, BC SCF‐4, BC SCF‐

5,  BC  SCF‐8,  BC  SCF‐7,  BC  SCF‐3  (група  представлена  лише  рослинами 

селекційно‐генетичного походження). 

Різниця між найбільшим показником (у генотипі BC NPF‐8) – 8,34 мм та 

найменшим  (у  BC  SCF‐9)  –  5,4  мм  складає  35,25 %.  Відмінність  середніх 

значень  за  діаметром  стебла  між  рослинами  природного  та  селекційно‐

генетичного походження становить 18,24 %. 

З’ясовано,  що  рослини  природного  походження  мають  товстіше  і 

потужніше стебло, у порівнянні з селекційно‐генетичними рослинами.  
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Рис. 5. 14. Діаметр стебла різних генотипів  

рослин Brassica carinata природного походження у фазі квітування 
 

 
Рис. 5. 15. Діаметр стебла селекційно‐генетичних 
 форм рослин Brassica carinata у фазі квітування 

 
Також попри очікування найвищі рослини не завжди мають найтовстіші 

корені,  хоча  певна  кореляція  показників  висоти  і  діаметру  стебла присутня. 

Більш  чітко  прослідковується  зв’язок  між  довжиною  кореня  та  діаметром 

стебла, хоча не скрізь ці показники взаємопов’язані. 

У  фазі  квітування  проведено  аналіз  біометричних  параметрів  листків 

рослин Brassica carinata (рис. 5. 16, 5. 17).  
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Рис. 5. 16. Морфометричні показники  різних генотипів 

 рослин Brassica carinata природного походження у фазі квітування 
 

 
Рис. 5. 17. Морфометричні показники листків 

 селекційно‐генетичних форм рослин Brassica carinata у фазі квітування 
 

За  результатами  оцінки  довжини  листкової  пластинки  було  виявлено 

ряд  закономірностей,  які  дозволили  розподілити  досліджувані  генотипи  на 

такі  групи: рослини з довгими листками  (понад 12 см) – BC SCF‐2, BC NPF‐8, 

BC SCF‐3,  BC  SCF‐4,  BC  NPF‐4,  BC  NPF‐2;  рослини  із  середньою  довжиною 

листків (від 10,6 см до 12 см) – BC SCF‐6, BC NPF‐5, BC NPF‐3, BC NPF‐6, BC SCF‐
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1; коротколисті (до 10,5 см) – BC SCF‐9, BC SCF‐7, BC SCF‐8, BC NPF‐1 , BC SCF‐5, 

BC NPF‐7. 

Аналіз  рослин  дозволив  виявити,  що  за  довжиною  листка  рослини 

різного походження розподілені досить рівномірно, хоча варто зазначити, що 

генотипи природного походження схильні до більшої довжини листків. 

Різниця між найбільшою довжиною листка (BC NPF‐2 – 13 см) і наймен‐

шою (BC SCF‐9 – 8,8 см) становить 4,2 см (32,31 %). 

Отримані  дані  щодо  оцінки  ширини  листків  дозволили  розподілити 

рослини на три групи: широколисті (понад 9 см) – BC SCF‐4, BC NPF‐4, BC NPF‐

6, BC SCF‐3, BC NPF‐8, BC NPF‐2;  середньої ширини  (від 6,6  см до 9 см) – BC 

SCF‐8, BC NPF‐7, BC SCF‐1, BC SCF‐2, BC NPF‐3, BC NPF‐5; вузьколисті (до 6,5 см) – BC 

SCF‐6, BC SCF‐5, BC NPF‐1, BC SCF‐9, BC SCF‐7. 

Аналіз  отриманих  даних  дозволив  встановити,  що  показники  як 

ширини  листків  так  і  довжини  розподілені  доволі  рівномірно,  з  невеликою 

перевагою у рослин природного походження. Найширші листки забезпечував 

генотип  BC NPF‐2  (9,8  см).  Варто  зазначити,  що  цей  генотип  також  має  і 

найдовше  листя.  Найвужче  листя  у  генотипа  BC  SCF‐6  (6,1  см),  різниця  за 

крайніми розмірами становить 3,7 см (37,76 %). 

Також  варто  зазначити,  що,  як  і  в  період  стеблування,  довжина  та 

ширина листя  корелюється між  собою,  а  рослини  з  коротким листям  також 

мають і вузькі листки, та навпаки. 

З  огляду  на досить  велику  різницю між максимальною  і мінімальною 

довжиною  черешка,  яка  становить  56,45 %,  рослини  за  цим  показником 

розподілено  на  три  групи:  з  довгим  черешком  (понад  8  см)  –  BC  NPF‐2, 

BC NPF‐6, BC NPF‐8, BC SCF‐4, BC NPF‐4;  з  черешком середньої довжини  (від 

6,5  до  8  см)  –  BC  SCF‐9,  BC  NPF‐7,  BC  NPF‐3,  BC  NPF‐5,  BC SCF‐2,  BC  SCF‐3, 

BC SCF‐7,  BC  SCF‐5,  BC  SCF‐8,  BC  SCF‐1  (група  представлена  виключно 
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рослинами  селекційного‐генетичного  походження);  з  коротким  черешком 

(до 6,4 см): BC NPF‐1, BC SCF‐6. 

Досліджено  кількісні  показники  листків  та  суцвіть  у  фазі  квітування 

(рис. 5. 18,  5.1 9).  Аналізуючи  отримані  дані  варто  зазначити,  що  різниця 

кількості листків у фазі квітування є досить значною та складає 62,5 %.  

 

 
Рис. 5. 18. Кількість листків та суцвіть різних генотипів рослин  
Brassica carinata природного походження у фазі квітування 

 
 

 
Рис. 5. 19. Кількість листків та суцвіть селекційно‐генетичних  

форм рослин Brassica carinata у фазі квітування 

0

5

10

15

20

25

BC NPF‐1 BC NPF‐2 BC NPF‐3 BC NPF‐4 BC NPF‐5 BC NPF‐6 BC NPF‐7 BC NPF‐8

ш
т

Генотип рослин

кількість листків кількість суцвіть

0

2

4

6

8

10

12

BC SCF‐1 BC SCF‐2 BC SCF‐3 BC SCF‐4 BC SCF‐5 BC SCF‐6 BC SCF‐7 BC SCF‐8 BC SCF‐9

ш
т

Генотип рослин

кількість листків кількість суцвіть



112 

Проте варто зазначити, що така різниця мінімального і максимального 

значення  зумовлена  наявністю  двох  генотипів  природного  походження  зі 

значно  більшою  кількістю  листків,  ніж  у  всіх  інших  генотипів.  Тому  за 

кількістю  листків  генотипи  було  розподілено  на  наступні  групи:  рослини  з 

великою  кількістю  листків  (понад  10  шт.)  –  BC  NPF‐1,  BC  NPF‐8  (група 

представлена  лише  рослинами  природного  походження);  із  середньою 

кількістю листків (9–10 шт.) – BC NPF‐2, BC NPF‐3, BC NPF‐7, BC NPF‐6, BC SCF‐3, 

BC NPF‐4, BC NPF‐5, BC SCF‐2, BC SCF‐1; з малою кількістю листків (до 8 штук) – 

BC SCF‐5, BC SCF‐6, BC SCF‐8, BC SCF‐4, BC SCF‐9, BC SCF‐7 (група представлена 

рослинами селекційно‐генетичного походження). 

Таким чином, рослини природного походження в цілому мають більшу 

кількість  листків  у  фазі  квітування,  порівняно  із  селекційно‐генетичними 

формами. 

Дослідження кількості суцвіть дозволило здійснити розподіл генотипів 

на три групи: з великою кількістю суцвіть (понад 7,5 шт.) – BC SCF‐6, BC NPF‐3, 

BC SCF‐3, BC NPF‐1; з середньою кількістю суцвіть (від 5,5 до 7,5 шт.) – BC NPF‐

2, BC SCF‐9, BC NPF‐8, BC NPF‐4, BC NPF‐6, BC SCF‐2, BC SCF‐1, BC SCF‐7, BC NPF‐

5,  BC  SCF‐5,  BC  SCF‐4;  з  малою  кількістю  суцвіть  (до  5,5  штук)  –  BC  NPF‐7, 

BC SCF‐8. 

За  кількістю  суцвіть  рослини  розподілені  відносно  рівномірно.  Також 

варто зазначити, що кореляція між кількістю суцвіть і кількістю листків майже 

відсутня,  проте  генотип  BC  NPF‐1,  який  має  найбільше  суцвіть,  також 

виділяється дуже великою кількістю листків,  у  той же час рослини  генотипу 

BC NPF‐8, у якого найбільша кількість листя, має посередню кількість суцвіть. 

Середнє  значення  за  кількістю  суцвіть  у  рослин  природного 

походження становить 7,13, а для рослин селекційно‐генетичних форм – 6,93, 

що становить незначну (2,8 %) різницю. 
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Здійснено аналіз масової частки різних органів рослин Brassica carinata. 

Встановлено, що  у фазі  стеблування  –  початок  бутонізації маса  селекційних 

форм рослин переважно є більшою за природні форми (рис. 5. 20, 5. 21).  

 

Рис. 5. 20. Масова частка різних органів рослин інтродукованих популяцій 
Brassica carinata у період стеблування‐початок бутонізації  

 

Рис. 5. 21. Масова частка різних органів селекційно‐генетичних форм рослин 
Brassica carinata у період стеблування‐початок бутонізації 
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Так,  аналізуючи  масу  листків  досліджуваних  генотипів  було  виділено 

три  групи рослин:  з малою масою  (до 55  г)  – BC NPF‐8,  BC NPF‐2,  BC NPF‐3, 

BC SCF‐6, BC NPF‐5; з середньою масою (від 56 до 80 г) – BC NPF‐6, BC NPF‐7, 

BC SCF‐7, BC SCF‐4, BC SCF‐3, BC SCF‐5; з великою масою (понад 80 г) – BC NPF‐

4, BC NPF‐1, BC SCF‐9, BC SCF‐2, BC SCF‐8, BC SCF‐1. 

Аналіз  отриманих  даних  дозволив  виявити,  що  в  усіх  групах  є 

представники  рослин  різного  походження.  Проте  рослини  селекційно‐

генетичного походження переважають у групі з великою масою. 

За  масою  стебла  генотипи  доцільніше  розподілити  на  чотири  групи 

рослин:  з  малою масою  (до  40  г)  –  BC NPF‐6,  BC NPF‐2,  BC NPF‐7,  BC NPF‐ 8, 

BC NPF‐5, BC SCF‐5;  із середньою масою (від 41 до 55 г) – BC NPF‐3, BC SCF‐7, 

BC  NPF‐1,  BC  NPF‐4;  з  великою масою  (від  56  до  85  г)  –  BC SCF‐6,  BC  SCF‐8, 

BC SCF‐4  (виключно  рослини  селекційно‐генетичного  походження);  з  дуже 

великою  масою  (понад  85  г)  –  BC  SCF‐9,  BC  SCF‐1,  BC SCF‐2,  BC SCF‐3 

(виключно рослини селекційно‐генетичного походження). 

У  даних  групах  наочно  видно  перевагу  генетично‐селекційних  рослин 

над  природними,  адже  дві  групи  з  найбільшою  масою  представлено 

виключно рослинами селекційно‐генетичного походження. Також у групах із 

середньою та низькою масою є лише по одному представнику зразків рослин 

селекційно‐генетичного походження. 

За масою коренів рослини також було поділено на чотири групи, адже 

різниця між максимальним та мінімальним значеннями складає 75 %. Групи 

були сформовані наступним чином: рослини з малою масою коренів (до 8 г) – 

BC NPF‐6, BC NPF‐8, BC NPF‐2 BC NPF‐3, BC NPF‐7, BC NPF‐5 (виключно рослини 

природного  походження);  із  середньою  масою  (від  9  до  11  г)  –  BC SCF‐5, 

BC SCF‐7,  BC NPF‐1,  BC  SCF‐6,  BC NPF‐4;  з  великою масою  (від 12    до 15  г)  – 

BC SCF‐4,  BC  SCF‐1,  BC  SCF‐3  (виключно  рослини  селекційно‐генетичного 
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походження); з дуже великою масою коріння (понад 15 г) – BC SCF‐8, BC SCF‐

9, BC SCF‐2 (також рослини селекційно‐генетичного походження). 

За масою коренів зберігається тенденція переваги рослин селекційно‐

генетичного  походження,  так  само  як  і  за  показником  надземної  маси.  У 

даному  випадку  рослини  з  малою  масою  коренів  представлені  лише 

зразками природного походження. 

Загалом,  аналізуючи  всі  три  показники,  варто  зазначити,  що  рослини 

селекційно‐генетичного  походження  в  цілому  характеризуються  кращими 

продуктивними  параметрами у період стеблування‐початок бутонізації. 

Для  більш  глибокого  й  об’єктивного  дослідження  інтродукованих  

генотипів було продовжено вивчення масової частки різних органів рослин у 

період квітування і квітування‐плодоношення (рис. 5. 22, 5. 23).  

 
Рис. 5.22. Масова частка різних органів рослин інтродукованих популяцій 

Brassica carinata у період квітування‐початок плодоношення 
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Рис. 5. 23. Масова частка різних органів селекційно‐генетичних форм рослин 

Brassica carinata у фазі квітування 
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масою  (понад  500  г)  –  BC  NPF‐8,  BC  NPF‐3,  BC  NPF‐66  (рослини  виключно 

природного  походження).  Помічено,  що  за  масою  стебла  зберігається 

тенденція  переважання  рослин  природного  походження  упродовж  фази 

квітування, попри зворотну ситуацію у фазі стеблування. 

За масою кореня рослини, аналогічно до попередніх показників, були 

розділена на три наступні групи: з малою масою (до 45 г) – BC SCF‐5, BC SCF‐6, 

BC SCF‐7, BC SCF‐9, BC SCF‐4;  із середньою масою (від 46 до 65 г) – BC SCF‐8, 

BC SCF‐3, BC SCF‐2, BC SCF‐1, BC NPF‐1, BC NPF‐2, BC NPF‐5; з великою масою 

(понад  65  г)  –  BC  NPF‐4,  BC  NPF‐7,  BC  NPF‐8,  BC  NPF‐3,  BC  NPF‐6.  За  масою 

кореня  ситуація  майже  аналогічна  до  попереднього  показника,  тобто 

рослини природного походження дещо переважали серед інших зразків. 

За  масою  суцвіть  рослини  доцільно  поділити  на  три  групи,  а  саме:  з 

малою  масою  (до  85  г)  –  BC  NPF‐6,  BC  SCF‐6,  BC  SCF‐5,  BC  SCF‐7,  BC  SCF‐4, 

BC SCF‐9; з середньою масою (від 86 до 120 г) – BC SCF‐3, BC SCF‐8, BC SCF‐2, 

BC  SCF‐1,  BC  NPF‐2,  BC  NPF‐1,  BC  NPF‐5;  з  великою  масою  (понад  120  г)  – 

BC NPF‐4, BC NPF‐7, BC NPF‐8, BC NPF‐3. 

За  масою  суцвіть  зберігається  аналогічна  тенденція  переважання 

рослин природного походження. Проте варто зазначити, що генотип BC NPF ‐

6,  який  має  найбільшу  масу  в  усіх  інших  показниках,  має  найменшу  масу 

суцвіть,  тобто можна  зробити  висновок, що цей  генотип  витрачає більшість 

поживних речовин на продукування зеленої маси. 

Також  варто  зазначити,  що  три  інших  генотипи  з  найбільшими 

показниками  маси  листків,  стебла  і  кореня  BC  NPF‐3,  BC  NPF‐8,  BC  NPF‐7 

мають  також  найкращі  показники  маси  суцвіть,  що  робить  ці  зразки 

перспективними для використання у селекційному процесі та у виробництві.   

У  фазі  дозрівання  насіння  також  здійснено  оцінку  продуктивності 

надземної частини і масову частку їхніх вегетативних та генеративних органів 

(рис. 5. 24, 5. 25).  



118 

 

Рис. 5. 24. Масова частка різних органів селекційно‐генетичних форм рослин 
 Brassica carinata у фазі дозрівання насіння 

 

 
Маса, г (п=10) 

Рис. 5. 25. Масова частка різних органів рослин інтродукованих популяцій 
Brassica carinata у фазі дозрівання насіння 
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Внаслідок  аналізу  отриманих  експериментальним  шляхом  даних  за 

показником наземної маси, рослини у фазі дозрівання було поділено на три 

наступні  групи:  з  малою  масою  (до  400  г)  –  BC  SCF‐4,  BC  SCF‐8,  BC  SCF‐7, 

BC SCF‐5, BC SCF‐2; з середньою масою (від 401 до 500 г) – BC NPF‐7, BC SCF‐3, 

BC  NPF‐8,  BC  NPF‐2,  BC  NPF‐1,  BC  NPF‐5;  з  великою  масою  (понад  500  г)  – 

BC NPF‐4, BC SCF‐6, BC SCF‐1, BC SCF‐9, BC NPF‐3, BC NPF‐6. 

Порівнюючи  з  дослідженнями  інших  вчених,  варто  зазначити,  що 

середня маса рослин, отриманих у наших дослідах (462,82 г), є близькою до 

результатів,  отриманих  в  дослідженнях  Catia  Stamigna  (500,6  г)  (Stamigna  et 

al., 2012), де різниця у масі становить 7,54 %.  

За  показниками  маси  кореня  рослин  також  було  здійснено  розподіл 

генотипів на три групи: з малою масою (до 49 г) – BC SCF‐6, BC NPF‐5, BC SCF‐

4, BC NPF‐2, BC SCF‐7; із середньою масою ( від 50 до 59 г) – BC SCF‐8, BC SCF‐

5, BC NPF‐4, BC NPF‐7, BC SCF‐1, BC NPF‐3, BC NPF‐8, BC SCF‐9; з великою масою 

(понад 59 г) – BC SCF‐2, BC SCF‐3, BC NPF‐6, BC NPF‐1. 

За  показником,  зазначеним  вище,  рослини  розподілені  рівномірно,  з 

невеликою перевагою рослин природного походження, середня маса кореня 

яких  складає  54,75  г  проти  52,22  г  у  рослин  селекційно‐генетичного 

походження, різниця між якими становить всього 4,62 %. 

Також  варто  зазначити,  що  рослини  генотипів  BC  NPF‐6  та  BC  NPF‐1 

мають  найвищі  показники  маси  кореня,  що  є  подібним  до  аналогічного 

показника у фазі квітування. 

За  показником  загальної  маси  насіння  рослини  були  розподілені  на 

чотири наступні групи: з малою масою (до 69 г) – BC SCF‐2, BC SCF‐4, BC NPF‐2, 

BC SCF‐1;  із середньою масою (від 70 до 79 г) – BC NPF‐1, BC SCF‐5, BC SCF‐8, 

BC SCF‐7;  з великою масою (від 80 до 89  г) – BC SCF‐9, BC SCF‐6, BC NPF‐5; з 

дуже великою масою (понад 89 г) – BC SCF‐3, BC NPF‐7, BC NPF‐8, BC NPF‐4, BC 

NPF‐3, BC NPF‐6. 
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За  середньою  масою  насіння  є  невелика  перевага  у  зразків  рослин 

природного походження, що становить 3,48 %. Окремі досліджувані    зразки  

рослин переважають інші за масою насіння  від 11,64 % до 35,71 %. 

Також  варто  зазначити,  що  найбільша  маса  насіння  визначена  у 

генотипа  BC  NPF‐6,  незважаючи  на  найменшу  масу  суцвіть  цього  зразка. 

Виявлено,  що  цей  генотип  має  найкращі  показники  маси  інших  частин 

рослин,  що  робить  його  найціннішим  зразком  для  селекційного  процесу  і 

створення  високопродуктивних  сортів.  Варто  сказати  про  високі  показники 

продуктивності  у  рослин  генотипу  BC NPF‐3,  який  має  значну  урожайність 

надземної маси та насіння. 

Важливим  показником,  який  характеризує  успішність  інтродукційного 

процесу і урожайний потенціал рослин є маса насіння. Проаналізовано масу 

насінин (1000 штук) інтродукованих генотипів (рис. 5. 26), що у свою чергу та‐

кож дозволило розподілити їх на дві групи: рослини з малою масою насіння 

(до  3,5  г/1000 шт)  –  BC NPF‐1,  BC NPF‐8,  BC NPF‐7,  BC NPF‐6  і  рослини  з  ве‐

ликою масою (понад 3,5 г/1000 шт) – BC NPF‐5, BC NPF‐4, BC NPF‐3, BC NPF‐2. 

 
Рис. 5. 26. Маса 1000 насінин рослин  

інтродукованих популяцій Brassica carinata  
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Отримані  дані  свідчать  про  те, що  рослини,  які  мали  більшу  загальну 

масу  насіння,  в  цілому  характеризуються  низьким  показником  маси  1000 

насінин.  Проте,  варто  зауважити,  що  генотип  BC NPF‐3  демонструє  високі 

результати  –  як  за масою 1000 насінин,  так  і  за  загальною масою насіння  з 

рослини. 

Порівнюючи  отримані  нами  результати  щодо  середньої  маси 

1000 насінин  (3,513  г),  з даними  інших дослідників  з’ясували, що вони були  

майже  ідентичними  до  показників,  отриманих  у  Північній  Флориді  (3,54  г) 

(Mulvaney et al., 2019) та в інших умовах (3,53 г) (Mohdaly at al., 2022).  

Насіння  в  усіх  представників  округлої  форми,  тому  крупність  насіння 

можна  визначати  за  діаметром  самої  насінини  (рис. 5. 27).  Дослідження 

діаметру насінин Brassica carinata дозволили здійснити розподіл генотипів на 

дві  групи:  дрібнонасінні  (з  діаметром  до  1,65  мм)  –  BC  NPF‐1,  BC NPF‐8, 

BC NPF‐7, BC NPF‐6  і  крупнонасінні  (з діаметром понад 1,65 мм) – BC NPF‐5, 

BC NPF‐4,  BC  NPF‐3,  BC  NPF‐2.  Варто  зазначити,  що  розподіл  рослин  за 

діаметром насінини корелює їхнім розподілом за масою 1000 насінин. 

 

Рис. 5. 27. Діаметр насінини рослин  
інтродукованих популяцій Brassica carinata, мм 
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Встановлено, що за масою 1000 насінин існує суттєва різниця, залежно 

від генотипових особливостей селекційно‐генетично створених форм рослин 

(рис. 5. 28).  Аналіз  отриманих  даних  дозволив  розподілити  відповідні 

генотипи  на  групи  рослин  з  великою масою  насіння  (понад  3  г/1000 шт.)  – 

BC SCF‐3,  BC  SCF‐4,  BC  SCF‐5,  BC  SCF‐6,  BC  SCF‐8,  BC  SCF‐9  і  з  малою  масою 

насіння (до 3 г/1000 шт.) – BC SCF‐1, BC SCF‐2, BC SCF‐7. За даними досліджень 

Ambaw  et  al.  (2024)  маса  1000  насінин  рослин  Brassica  carinata  варіює  у 

межах 2,44–6,05 г залежно від сортових особливостей. 

 
Рис. 5. 28. Маса 1000 насінин селекційно‐генетичних форм  

рослин Brassica carinata 
 

Виявлено, що лінійні розміри насінини тісно пов’язані із масою 1000 шт. 

Досліджені  генотипи за діаметром насіння було розподілено на дві  групи: з 

великим  діаметром  насінини  (>  1,55  мм)  –  BC  SCF‐3,  BC  SCF‐4,  BC  SCF‐5, 

BC SCF‐6,  BC  SCF‐8,  BC  SCF‐9;  з  малим  діаметром  насінини  (≤  1,55  мм)  –  BC 

SCF‐1, BC SCF‐2, BC SCF‐7 (рис. 5.29).  
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Рис. 5.29. Діаметр насінини селекційно‐генетичних форм 

 рослин  Brassica carinata, мм 
 

Варто  зазначити,  що  у  наявній  науковій  літературі  дослідженню 

діаметру  насіння  рослин  Brassica  carinata  не  приділено  уваги.  Тому  є 

перспектива  розширення  спектру  генотипів  для  збору  аналітичних  даних  і 

створення більш детальних груп за величиною насінин. 

 

5.2. Фізіологічний стан рослин Brassica carinata в умовах інтродукції 
 

В  умовах  сьогодення,  як  у  регіональному,  так  і  в  світовому масштабі, 

важливим науковим питанням є пошук механізмів стійкості живих організмів 

до  біотичних  та  абіотичних  чинників  довкілля.  Рослини,  які  є  одним  із 

найважливіших  компонентів  у  забезпеченні  життєдіяльності  біологічних 

систем  на  Землі,  потребують  значної  уваги  та  взаємодії  широкого  кола 

фахівців  (ботаніків,  фізіологів,  генетиків,  екологів,  біохіміків,  біотехнологів, 

селекціонерів),  що  сприятиме  ефективному  збереженню  і  збагаченню 

фіторізноманіття. 
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Аналіз  фізіологічно  активних  сполук  різних  генотипів  рослин  Brassica 

carinata  за  допомогою  мультипігментного  вимірювача  MPM‐100  (ADC 

BioScientific  Ltd,  UK)  на  розвинутих  листках  рослин  дозволив  виявити  певні 

закономірності  у  динаміці  їх  накопичення  упродовж  вегетаційного  періоду 

(рис. 5. 30).  

 
Рис. 5. 30. Динаміка накопичення хлорофілу у листках різних генотипів 

рослин Brassica carinata залежно від фази розвитку (n = 10) 
 

Коливання  хлорофілу  (ChlM)  головним  чином  пов’язують  із  набуттям 

генетичної  стійкості  рослин  до  впливу  ультрафіолетового  випромінювання 

(Jovanic  et  al.,  2022).  Встановлено,  що  майже  у  всіх  досліджених  зразках 

відбувається  зростання  рівня  хлорофілу  в  листках,  від  бутонізації  до 

квітування,  та  зменшення до фази  плодоношення.  Високий  вміст  хлорофілу 

свідчить  про  оптимізовану  роботу  фотосистеми  ІІ,  що  в  свою  чергу  має 

позитивно відобразитися на продуктивних показниках рослин. За допомогою 

статистичної  обробки  даних  виділено  групи  рослин  щодо  стійкості 

фотосинтетичного апарату до умов навколишнього середовища: високостійкі 

– BC NPF‐1, BC NPF‐2, BC NPF‐4, BC NPF‐6, BC NPF‐7, BC SCF‐1, BC SCF‐2, BC SCF‐

 3, BC SCF‐4; стійкі – BC NPF‐3, BC NPF‐5, BC NPF‐8, BC SCF‐5, BC SCF‐6, BC SCF‐7, 

BC SCF‐8, BC SCF‐9. 
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Відомо,  що  зі  зростанням  рівня  хлорофілу  відбувається  зменшення 

рівня іншої складової оптимізованої роботи фотосистеми ІІ – флавонолу (Rea 

et  al.,  2022;  Ali  et  al.,  2023;  Negussu  et  al.,  2023).  У  нашому  дослідженні  в 

цілому  спостерігали  зменшення  рівня  флавонолу  у  листках  рослин  усіх 

генотипів залежно від фази розвитку (рис. 5. 31).  

 

 
Рис. 5. 31. Динаміка накопичення флавонолу у листках різних генотипів 

рослин Brassica carinata залежно від фази розвитку (n = 10) 
 

Але  варто  зазначити,  що  вміст  флавонолів  у  листках  досліджуваних 

генотипів  B.  carinata  не  завжди  прямопропорційно  зменшувався  зі 

збільшенням  хлорофілів  і  навпаки.  Статистична  обробка  даних  дозволила 

вичленити генотипи з найоптимальнішою роботою фотосистеми ІІ – BC NPF‐1, 

BC NPF‐6, BC SCF‐1, BC SCF‐2, BC SCF‐3, BC SCF‐4.  

На думку Ali et al. ще одним важливим показником оптимальної роботи 

фотосистеми  ІІ  є  азотно‐флаваноловий  індекс  (NFI),  адже  його  відносно 

високий  рівень  у  листках  у  впродовж  вегетаційного  періоду  забезпечує 

збалансованість  фізіологічних  процесів,  що  у  свою  чергу  попереджує 

абортивність квіток рослин, формування повноцінних плодів та насіння (Ali et 
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al.,  2023).  В  нашому  дослідженні  азотно‐флаваноловий  індекс  варіював 

залежно від генотипу та фази розвитку (рис. 5.32).  

 
Рис. 5. 32. Азотно‐флаваноловий індекс у листках різних генотипів рослин 

Brassica carinata залежно від фази розвитку (n = 10) 
 

У результаті статистичної обробки виділено дві групи стійкості рослин: 

високостійкі  –  BC NPF‐1,  BC NPF‐2,  BC NPF‐4,  BC NPF‐6,  BC NPF‐7,  BC SCF‐1, 

BC SCF‐2,  BC SCF‐3,  BC SCF‐4;  стійкі  –  BC NPF‐3,  BC NPF‐5,  BC NPF‐8,  BC SCF‐5, 

BC SCF‐6, BC SCF‐7, BC SCF‐8; BC SCF‐9. 

Отримані  результати  дозволяють  оцінити  фізіологічний  стан  рослин 

залежно  від  генотипових  особливостей  та  періоду  їх  розвитку  і  визначити 

найбільш стійкі зразки.  

Таким  чином,  скринінг  хлорофілу,  флаванолів  і  азотно‐флаванолового 

індексу дав змогу з’ясувати роботу фотосистеми ІІ досліджуваних генотипів та 

розподілити їх на дві групи стійкості – високостійкі і стійкі. З‐поміж 9 високо‐

стійких  зразків,  створених  селекційно‐генетичним  шляхом,  варто  виділити 

BC SCF‐12, який за усіма показниками у період розвитку виявив кращий стан 

фізіологічних  процесів  та  найвищий  вміст  фізіологічно‐активних  сполук. 

Щодо  решти  зразків  варто  зазначити, що  дисбаланс  речовин  є  тимчасовим 

явищем,  оскільки  після  подальших  селекційно‐генетичних  досліджень  буде 
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досягнуто  закріплення  фізіологічних  механізмів  стійкості  на  генетичному 

рівні.  Це  дозволить  відібрати  генотипи  рослин  із  підвищеною  стійкістю  до 

біотичних  і  абіотичних  факторів,  що  сприятиме  поліпшенню  процесу 

акліматизації  та  селекції  і  відбору  високоадаптивних  та  продуктивних 

генотипів  для  введення  в  культуру,  а  також  –  для  різнопланового 

використання. 

 
5.3. Біохімічні особливості рослин різних генотипів Brassica carinata 

 
На  тепер  актуальним  є  запровадження  у  сільськогосподарське  вироб‐

ництво  нових,  нетрадиційних  високопродуктивних  олійних  культур,  здатних 

не тільки конкурувати з ріпаком, але і переважати його за важливими харак‐

теристиками  як  джерела  якісної  харчової  та  технічної  олії.  До  таких 

перспективних  олійних  рослин  можна  віднести  гірчицю  ефіопську  (Brassica 

carinata) родини Brassicaceae. 

Brassica carinata – рослина багатофункціонального використання, котра 

насамперед забезпечує нехарчовою олійною сировиною з низьким вмістом 

вуглецю,  характеризується  непрямим  впливом  зміни  землекористування. 

Вона  вирощується  для  виробництва  екологічно  чистого  біопалива, 

біопродуктів  та  борошна  з  насіння  з  високим  вмістом  білка  (Bashyal  et  al., 

2021).  Вміст  поліфенольних  сполук  сировини  у  деяких  дослідженнях 

коливається  від  43  до  131  мг/100 г  (Mohdaly,  2022).  Одним  із  важливих 

напрямів дослідження даної культури є селекція за вмістом ерукової кислоти, 

високим чи низьким, залежно від мети (Roslinsky et al., 2021).  

З  огляду  на  те,  в  яких  умовах  вирощуються  рослини B.  carinata, вони 

мають  ряд  агротехнічних  переваг  у  порівнянні  з  іншими  олійними 

культурами,  що  характеризуються  подібними  екологічними  адаптаційними 

властивостями (Alemayehu, 2001). Урожайність насіння B. carinata та B. napus, 

в умовах  Італії,  значно відрізнялася від регіону походження рослин, різниця 
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між якими може сягнути 30 % з максимальним показником 4 т/га (Gatto et al., 

2015).  Урожайність  насіння  B.  carinata  без  внесення  добрив  становило 

1074 кг/га,  а  з  внесенням  азоту  (179  кг/га)  –  збільшилась  до  2783 кг/га 

(Bashyal  et  al.,  2021).  Це  стосувалося  також  продуктивності  олії  та  виходу 

ерукової  кислоти:  виявлено  збільшення  збору  олії  за  внесення  азоту 

(179 кг/га) до 1523 кг/га порівняно з контрольним варіантом (без азоту) – до 

612 кг/га та ерукової кислоти від 259 л/га (без азоту) до 646 л/га за внесення 

азоту. Середня врожайність 11 генотипів в умовах Південно‐Східної Америки 

становила від 2814 до 3401 кг/га, загальний вміст олії коливався від 42,0 до 

52,4 %, а вміст ерукової кислоти (С22:1) від 40,7 до 42,9 % (Kumar et al., 2020). 

Загальний вміст  сухої речовини є важливою функціональною ознакою 

рослин  (Vaieretti,  2007).  Одним  із  найважливіших  параметрів  дослідження 

енергетичних культур є вміст  сухої речовини, що тісно пов’язано з фотосин‐

тетичною  активністю  та  урожайністю  рослин  (Hagashide,  2022).  Вміст  сухої 

речовини, загальний вміст цукрів і моноцукрів представлений на рис. 5.33.  

 

Рис. 5. 33. Вміст сухої речовини, загальний вміст  
цукрів та моноцукрів у надземній масі генотипів Brassica carinata у період 

стеблування‐початок бутонізації 
 
У період стеблування‐початок бутонізації вміст сухої речовини у рослин 

B. carinata  становив від 9,44 %  (BC NPF‐4) до 13,02 %  (BC NPF‐2) залежно від 
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генотипу.  Завдяки  регуляторній  функції  у  рослинних  тканинах,  цукри 

впливають  на  всі  фази  життєвого  циклу  рослин,  взаємодіючи  з 

фітогормонами,  контролюють  ріст  та  розвиток  (Jeandet  et  al.,  2022). 

Загальний вміст цукрів у досліджуваних рослин становив від 10,80 % (BC NPF‐

8) до 18,35 % (BC NPF‐3) залежно від генотипу. Загальний вміст моноцукрів у 

рослин  B.  carinata  в  період  стеблування‐початок  бутонізації  становив  від 

10,26 %  (BC  NPF‐8)  до  16,62 %  (BC  NPF‐5)  залежно  від  генотипу.  Вміст 

моноцукрів у досліджуваних рослин був меншим за загальний вміст цукрів у 

межах 0,09–3,11 % залежно від генотипу.  

Іншими дослідниками зазначається, що вміст сухої речовини та протеї‐

ну в шроті рослин B.сarinata був більшим у порівнянні з ріпаком (Ban, 2017). 

У  період  стеблування  –  початок  бутонізації  також  визначено  вміст 

дубильних  речовин,  аскорбінової  кислоти  і  титровану  кислотність  водних 

екстрактів (рис. 5.34). Сумарний вміст вільних органічних кислот та дубильних 

речовин у досліджуваних екстрактах B. carinata становив 2,02–2,43 % та 0,16–

0,48 % залежно від генотипу. Вміст аскорбінової кислоти у надземній частині 

рослин B. carinata становив від 256,35 мг/100 г  (BC NPF‐1) до 377,66 мг/100 г 

(BC NPF‐4) залежно від генотипу.  

 
Рис. 5.34. Загальний вміст дубильних речовин, аскорбінової кислоти і 

титрована кислотність у надземній масі генотипів Brassica carinata у період 
стеблування‐початок бутонізації  
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У  період  плодоношення  спостерігалися  зміни  щодо  вмісту  сухої 

речовини,  цукрів  та  моноцукрів.  Вміст  сухої  речовини  збільшувався  у 

порівнянні  з  фазою  стеблування‐початок  бутонізації  і  становив  від  19,79 % 

(BC NPF‐8)  до  21,77 %  (BC NPF‐7)  залежно  від  генотипу  (рис.  5.  35).  Середнє 

значення  сухої  речовини  у  період  стеблування‐початок  бутонізації  для  усіх 

генотипів  становив 11,42 %,  тоді  як  у період плодоношення – 20,66 %, що у 

1,8  рази  більше.  Загальний  вміст  цукрів  у  досліджуваних  рослин  в  період 

плодоношення був від 5,03 % (BC NPF‐6) до 7,28 % (BC NPF‐5). У середньому 

для  усіх  генотипів  вміст  цукрів  у  період  стеблування‐початок  бутонізації 

становив 14,90 %, а в період плодоношення – 5,87 %, що у 2,54 рази менше. 

Середній вміст моноцукрів у період стеблування‐початок бутонізації становив 

13,80 %, у період плодоношення – 4,51 %, що зменшилось у 3 рази.  

 
Рис. 5. 35. Вміст сухої речовини, загальний вміст цукрів і моноцукрів у 

надземній масі генотипів Brassica carinata у період плодоношення 
 

У  період  плодоношення  поряд  зі  стеблування  –  початком  бутонізації 

також  визначали  вміст  дубильних  речовин,  аскорбінової  кислоти  та 

органічних кислот у сировині рослин B. carinata (рис. 5. 36). Вміст дубильних 

речовин  у  цей  період  становив  від  0,25 %  (BC  NPF‐8)  до  1,03 %  (BC  NPF‐4) 

залежно  від  генотипу.  У  період  плодоношення  сумарний  вміст  дубильних 
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речовин (0,73 %) збільшувався у 2,43 рази порівняно з періодом стеблування‐

початком бутонізації (0,30 %).  

 

Рис. 5. 36. Загальний вміст дубильних речовин,  
аскорбінової кислоти і титрована кислотність у надземній масі генотипів 

Brassica carinata у період плодоношення 
 

Титрована  кислотність  досліджуваних  генотипів  B.  carinata  була  від 

1,18 %  (BC  NPF‐2)  до  2,15 %  (BC  NPF‐7).  Її  середній  вміст  у  досліджуваних 

генотипів  у  період  стеблування  –  початок  бутонізації  становив  2,19 %,  а  в 

період  плодоношення  –  зменшився  до  1,76 %.  Досліджувані  рослини 

характеризувались рівнем аскорбінової  кислоти у період плодоношення від 

128,96 мг/100 г (BC NPF‐2) до 224,0 мг/100 г (BC NPF‐6), залежно від генотипу. 

Середній  вміст  аскорбінової  кислоти  для  усіх  генотипів B.  carinata  у  період 

стеблування‐початок  бутонізації  становив  316,18  мг/100  г,  тоді  як  у  період 

плодоношення цей показник зменшувався до 182,32 мг/100 г або в 1,73 рази.  

У  насінні  45  генотипів,  які  досліджувались  в  Індії,  визначено  вміст 

аскорбінової кислоти в межах 60–80 мг/г (Kumar et al., 2017).  

Визначено,  що  вміст  ліпідів  у  період  стеблування‐початок  бутонізації 

рослин  B.  сarinata  становив  від  5,26 %  (BC  NPF‐5)  до  10,31 %  (BC  NPF‐3) 
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(рис. 5.37),  вміст  азоту – 2,53 %  (BC NPF‐1) до 2,98 %  (BC NPF‐3  та BC NPF‐7), 

вміст протеїну – від 13,98 % (BC NPF‐1) до 16,52 % (BC NPF‐3).  

 

Рис. 5. 37. Загальний вміст ліпідів, азоту і протеїну в надземній масі генотипів 
Brassica carinata у період стеблування‐початок бутонізації 

У  період  плодоношення  в  надземній  частині  досліджуваних  рослин 

вміст ліпідів становив від 3,15 % (BC NPF‐8) до 10,41 % (BC NPF‐3), азоту – від 

1,53 % (BC NPF‐2) до 1,77 % (BC NPF‐8), протеїну від 8,49 % (BC NPF‐2) до 9,8 % 

(BC NPF‐8), залежно від генотипу (рис. 5. 38).  

 

Рис. 5. 38. Загальний вміст ліпідів, азоту і протеїну в надземній масі генотипів 
Brassica carinata у період плодоношення 
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Таким чином, протягом вегетаційного періоду рослини Brassica carinata 

активно накопичують нутрієнти у надземній масі залежно від фази розвитку 

та  генотипових  особливостей.  На  початку  вегетації  досліджувані  рослини 

характеризувались  інтенсивнішим  накопиченням  аскорбінової  кислоти, 

цукрів,  моноцукрів,  вільних  органічних  кислот,  золи,  протеїну  порівняно  з 

періодом плодоношення. Навпаки, вміст сухої речовини і дубильних речовин 

збільшувався до періоду плодоношення.  

Вміст ліпідів у насінні. У багатьох рослинах ліпіди становлять до 80 % 

сухої  маси  запасаючих  тканин.  У  насінні  ліпіди  накопичуються  у  вигляді 

триацилгліцеринів,  які  утворюються  шляхом  розширення  мембранно‐

ліпідного біосинтетичного шляху, спільного для всіх рослинних тканин (Valker 

and Kinney, 2001).  Дослідження насіння різних років урожаю показало деякі 

відмінності у накопиченні ліпідів залежно від генотипу. Вміст сухої речовини 

в  насінні  2023  року  урожаю  становив  від  91,08 %  (BC  NPF‐1)  до  94,21 % 

(BC NPF‐7)  залежно  від  генотипу  та  походження  зразків  (рис.  5.  39).  Вміст 

ліпідів у досліджуваному насінні був від 21,1 % (BC SCF‐1) до 36,02 % (BC NPF‐

 2), залежно від генотипу.    

 

Рис. 5. 39. Вміст ліпідів у насінні Brassica carinata 
 залежно від генотипових особливостей і року урожаю 

 
Вміст  жирних  олій  у  генотипів  Brassica  carinata,  вирощуваних  в  Ірані, 

становив 25,1–29,1 % (Sharafi et al., 2015; Kumar et al., 2017), в умовах Індії був 
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значно  вищий  та  досягав  37,88–41,12 %.  Вміст  жирних  олій  та  протеїну  в 

насінні різних генотипів в умовах Єгипту становив 27,0–38,4 % та 24,6–35,4 % 

відповідно (Mohdaly, 2022).  

 

5.4. Енергетична цінність олійних рослин роду Brassica 

Визначено  енергетичну  цінність  насіння  рослин  різних  форм  і  сортів 

Brassica  napus  f.  annua  DC.  (рис.  5.  40).  Найбільшою  калорійністю  насіння 

серед  зразків  вирізнялася  форма  EORIAFA.  У  цілому  енергетична  цінність 

насіння  досліджуваних  форм  і  сортів  рослин  становила  від  5560  до 

6331 ккал/кг.  

 
Рис. 5. 40. Енергетична цінність насіння рослин  
різних форм і сортів Brassica napus f. annua DC. 

 
За  енергетичною  цінністю  насіння  генотипи  рослин  Brassica  carinata 

суттєво  відрізняються  (рис. 5. 41).  У  цілому  енергетична  цінність  насіння 

інтродукованих  зразків  рослин  становила  від  5454  до  5830 ккал/кг.  Серед 

досліджуваних  форм  особливо  вирізнялись  BC NPF‐7  та  BC NPF‐8,  але 

найбільшу теплоємність встановлено у генотипі BC NPF‐8.  
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Рис. 5. 41. Енергетична цінність насіння  

рослин інтродукованих популяцій Brassica carinata 
 

У селекційно‐генетичних форм рослин Brassica carinata також виявлено 

суттєву  різницю  у  калорійності  насіння,  яка  варіювала  у  межах  від  5369  до 

5900 ккал/кг  (рис. 5. 42).  Серед  досліджуваних  генотипів  найвищою 

енергетичною  цінністю  вирізнявся  BC  SCF‐6.  Варто  відмітити  той  факт,  що 

досліджень, пов’язаних із встановленням калорійності фітомаси цього виду, в 

науковій літературі не знайдено. 

 
Рис. 5. 42. Енергетична цінність насіння 

 рослин  селекційно‐генетичних форм Brassica carinata   
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Виявлено,  що  надземна  частина  у  рослин  Brassica  carinata  (побічна 

продукція) має значно меншу калорійність порівняно з насінням (рис. 5. 43). 

Майже  всі  генотипи,  які  забезпечували  меншу  калорійність  насіння, 

демонстрували обернено пропорційні показники за  надземною фітомасою. 

 
Рис. 5. 43. Енергетична цінність надземної маси  

рослин інтродукованих популяцій Brassica carinata 
 

Таким  чином,  з’ясовано,  що  фітомаса  і  насіння  олійних  рослин  роду 

Brassica  характеризуються  високою  енергетичною  цінністю.  Надземна  маса 

рослин різних генотипів Brassica carinata забезпечила від 3444 (BC NPF‐8) до 

3994 ккал/кг  (BC  NPF‐1).  Найвищою  калорійністю  насіння  характеризуються 

генотипи  BC NPF‐8  (5830 ккал/кг)  та  BC  SCF‐6  (5900 ккал/кг).  В  цілому  кало‐

рійність насіння зразків Brassica napus дещо перевищує  (на 191‐431 ккал/кг) 

Brassica carinata і в найкращих генотипів становить 6186‐6331 ккал/кг.  
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5. 5. Біохімічний склад олії  Brassica carinata 
 залежно від генотипових особливостей рослин 

 
Важливим  завданням  роботи  є  поліпшення  якісно‐кількісних  харак‐

теристик фітосировини  і підвищення продуктивності рослин B. carinata, що 

сприятиме  створенню  збалансованих  харчових  продуктів,  цінних  лікарських 

засобів на основі її ліпідів та олій технічного призначення.  

За  результатами  досліджень  проведено  аналіз  олії  генетично 

різноманітних  зразків  природних  популяцій  і  селекційно‐генетичних  ліній 

гірчиці ефіопської – 16 зразків.   

Проведено скринінг літературних  та  інформаційних джерел, підібрано 

й  опрацьовано методики. Відомо, що  найбільш достовірними показниками,  які 

характеризують  якість  і  автентичність  олії  та  олійно‐жирової  сировини  є 

жирнокислотний та ацилгліцериновий склади, а також параметри стеринової фракції, 

які визначають хроматографічними та спектрометричними методами. 

Методичні  аспекти  досліджень.  Рослинні  олії  є  леткі  (ефірні)  та 

нелеткі,  тобто жирні. Жирні олії  рослин цінуються  за  компонентний набір  – 

жирні  кислоти,  які  займають  важливе  місце  у  життєдіяльності  організму 

людини, особливо незамінні.  Зазвичай,  такі олії  класифікують, орієнтуючись 

на вміст певних жирних кислот, а саме: 

‐ лауринова  група  –  олії,  які  мають  у  своєму  складі  лауринову  та  ін. 

низькомолекулярні кислоти (кокосова, пальмоядрова олії); 

‐ ерукова  група  –  олії,  які  містять  ерукову,  нервонову,  ейкозенову 

кислоти (це високоерукові олії ріпаку, гірчиці, суріпиці); 

‐ пальмітинова  група  –  олії,  які  характеризуються  високим  вмістом 

пальмітинової кислоти (пальмова, бавовняна олії); 

‐ олеїнова  група  –  найбільший  вміст  олеїнової  кислоти  (оливкова, 

високоолеїнова  соняшникова,  вівсяна,  арахісова,  абрикосова, 

сафлорова, рисова, фісташкова олії); 
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‐ олеїново‐лінолева група − олії цієї групи паритетно містять олеїнову 

та лінолеву кислоти  (кунжутна, вишнева олії); 

‐ лінолева  група  −  переважає  лінолева  кислота  (соняшникова, 

кукурудзяна, конопляна, гарбузова, кедрова олії); 

‐ α‐ліноленова  група  включає  олії  з  підвищеним  вмістом 

α‐ліноленової кислоти (лляна, гірчична, пшенична, соєва олії). 

Окремі  рослинні  олії  мають  здатність  до  висихання.  За  цією 

властивістю їх ранжують на групи: 

‐ висихаючі  (гліцериди  ліноленової  кислоти)  –  на  повітрі  зазнають 

окиснення, в результаті чого утворюють гладку, прозору, еластичну, 

суху  плівку,  яка  нерозчинна  в  органічних  розчинниках  (лляна, 

коноплева, перилова, рицинова олії); 

‐ напіввисихаючі  (гліцериди  лінолевої  кислоти)  –  плівка  утворюється 

повільно,  липка,  м`яка  і  не  така  тривка,  як  у  висихаючих  олій 

(соняшникова, кукурудзяна, макова, соєва олії); 

‐ невисихаючі (гліцериди олеінової кислоти) – не утворюють плівок та 

не  загущуються  під  час  нагрівання  (оливкова,  арахісова,  гірчична, 

пальмова олії). 

У нашому дослідженні ми з`ясовували олійність  зразків, форм  і  сортів 

рослин гірчиці ефіопської. 

Визначення  загального  кількісного  вмісту жирної  олії  у  насінні  гірчиці 

ефіопської проводили у лабораторних умовах  із дотриманням всіх методич‐

них вимог. Наважка насіння – 1(2) г, повторність – двократна. Наважку абсо‐

лютно  сухого  насіння  поміщали  в  пакет  із  фільтрувального  паперу,  який 

попередньо сушили протягом 1 год за температури 100‐105°С, потім охолод‐

жували і зважували. Пакети з наважками насіння поміщали у бюкси з притер‐

тою  пробкою,  заливали  петролейним  ефіром  та  витримували  24 години. 

Потім пакети поміщали до апарату Сокслета на 24 години для екстракції. По 
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завершенню екстракції отримували олію в колбі апарату. Отриманий зразок 

олії  після  повного  видалення  (випаровування)  ефіру  використовували  у 

подальших  хроматографічних  дослідженнях.  Пакети  з  апарату  Сокслета 

переміщали  до  кристалізатора  і  очікували  на  повне  випаровування 

розчинника,  а  потім  сушили  за  температури  100‐105°С  у  сушильній  шафі. 

Після  охолодження  в  ексикаторі  проби  зважували  на  аналітичних  вагах. 

Різниця у вазі пакета з наважкою насіння до і після екстракції дорівнює масі 

олії, тобто її кількісному вмісту. 

Х= m1*100/ m2 

де, m1 – пакет із наважкою до екстракції 

      m2 – пакет із наважкою після екстракції 

Для  того,  щоб  розуміти    характеристики  будь‐якої  рослинної  олії,  її 

досліджують  у лабораторних  умовах, насамперед для встановлення жирно‐

кислотного складу. Одним із сучасних методів визначення складу рослинних 

олій є капілярна  газова хроматографія. Вважається, що цей метод у світовій 

лабораторній  практиці  є  одним  із  найефективніших.  В  сучасній  газовій 

хроматографії  використовують  високоефективні  капілярні  колонки,  які 

дозволяють отримати інформацію для виявлення жирів.  

Визначення жирнокислотного складу олій  із насіння гірчиці ефіопської 

(зразків  різних  генотипів)  здійснено  за  допомогою  методу  газорідинної 

хроматографії.  Зразки  для  дослідження  готували  згідно  вимог  

ДСТУ  ISO  5509‐2002.  Принцип  пробопідготовки  засновано  на  луговому 

гідролізі тригліцеридів до вільних жирних кислот із послідуючим отриманням 

реакції етерифікації метилових ефірів жирних кислот. 

Хроматографічний  аналіз  виконано на  газовому  хроматографі НР 6890 

("Hewlett Packard", USA)  з  автоматичним  інжектором з діленням потоку  (split), 

оснащеному термостатом колонки з програмуванням температури, полум’яно‐

іонізаційним детектором і комп’ютерною системою зі спеціальним програмним 
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забезпеченням  для  автоматичного  інтеґрування  та  ідентифікації  піків 

ChemStation  Ver.A.06.03.  Застосовано  капілярну  колонку  SP‐2560  з  високо‐

полярною  нерухомою  фазою  –  біс‐цианопропілполісилоксаном  (незв’яза‐

ним):  довжина  100 м,  діаметр  0,25 мм,  товщина  плівки  0,2 мкм,  із  макси‐

мальною  робочою  температурою  250°С.  Завдяки  використанню  високо‐

ефективної  капілярної  колонки  було  розділено  значну  кількість  жирних 

кислот  та  їхніх  ізомерів.  Як  газ‐носій  використано  гелій;  потік  газу‐носія  – 

1,2 мл/хв. Об’єм введеної проби – 1,0 мкл. Концентрація проби – 20,0 мг/мл. 

Загальний час аналізу – 86,01 хв. 

Жирні кислоти  ідентифікували за часом утримання відповідно до часу 

утримання  стандартної  (еталонної)  суміші  (метод  порівняння).  Кількісний 

склад  суміші  визначили методом внутрішньої нормалізації,  коли сума площ 

всіх піків приймається за 100 % і концентрація будь‐якого компонента проби 

розраховується як відносна площа піка  

Ci (%) = (SiКі/ ∑SiКі) 100,          

де, Si – площа відповідного піка;  

Кі (або Rf) – калібрувальний коефіцієнт;  

∑SiКі – сума добутків площ піків на відносні поправочні коефіцієнти для 

усіх піків хроматограми. 

Оптимальні  умови  розділення  жирних  кислот,  у  тому  числі  й  їхніх 

ізомерів,  було  підтверджено  за  допомогою  калібрування  колонки 

стандартною  сумішшю  метилових  ефірів  жирних  кислот,  визначенням 

абсолютного  і  відносного  Rf  та  відгуку  (чутливості)  ПІД  для  кожного 

компонента  стандартної  суміші,  що  виражається  значенням  FID‐factor  за 

формулою  

FID = М/ (nx‐1) (AWc) (FID16:0),        

де, М – молекулярна маса метилових ефірів жирних кислот;  

(nx ‐ 1) – число атомів С у жирній кислоті; 
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AWc – молекулярна маса карбону (12,01);  

FID16:0  –  коефіцієнт  кореляції  для  пальмітинової  кислоти  (16:0),  що 

дорівнює 1,407.  

Абсолютний Rf визначається за формулою:  

Rf = S1MR2/ S2MR1,                        

де, S1 і S2 – площі піків двох розділених компонентів;  

MR1 і MR2 – їхні відносні масові частки.  

Відносний Rf визначається відносно піку. 

Результати  досліджень  та  їхнє  обговорення.  Попит  на  рослинні  олії 

для  харчового  і  нехарчового  використання  постійно  зростає,  тоді  як 

доступність  продуктивних  орних  земель  поступово  зменшується.  Щоб 

задовільнити  вимоги  промисловості,  не  впливаючи  на  можливість 

вирощування продовольчих  рослин для  виробництва продуктів  харчування, 

селекціонерам  необхідно  розробити  нові  та  вдосконалені  сорти  олійних 

культур.  Жирно‐кислотний  склад  відіграє  ключову  роль  у  визначенні 

властивостей і можливого використання рослинних олій (Marillia et al., 2013). 

Гірчиця  ефіопська  (Brassica  carinata)  є  перспективною  новою  промислово‐

олійною  культурою,  особливо  для  напівпустельних  регіонів  (Marillia  et  al., 

2013).  Відомо,  що  олії  гірчиці  ефіопської  були  генетично  модифіковані  для 

поліпшення  складу  жирних  кислот,  зокрема  збільшення  вмісту  довголан‐

цюгових жирних кислот  (наприклад,  ерукової  кислоти). Ці  вдосконалені олії 

можуть  забезпечити  сировину  для  виробництва  біореактивного  та 

біодизельного палива (Thakur et al., 2029; Redda et al., 2024). 

У  даній  роботі  було  проведено  біохімічні  дослідження  жирно‐

кислотного складу олії, отриманої з Brassica carinata. Для дослідження було 

обрано  8  форм  із  природної  флори  і  8  нових  селекційно‐генетичних  форм. 

Проведено  оцінку  наступних  форм  із  природної  флори  :   1  –  BC NPF‐1;  2  – 

BC NPF‐2; 3 – BC NPF‐3; 4 – BC NPF‐4; 5 – BC NPF‐5; 6 – BC NPF‐6; 7 – BC NPF‐7; 8 
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–  BC NPF‐8.  А  також  нових  селекційно‐генетичних  форм:  9  –  BC SCF‐1;  10  – 

BC SCF‐2;  11  –  BC SCF‐3;  12  –  BC SCF‐4;  13  –  BC SCF‐5;  14  –  BC SCF‐7;   15  – 

BC SCF‐8; 16 – BC SCF‐9.  

Жирні  кислоти  ідентифікували  за  часом  утримання  у  порівнянні  зі 

стандартним  розчином.  У  результаті  хроматографічного  аналізу  було 

встановлено, що основними жирними кислотами ефіопської гірчиці є ерукова 

(С22:1),  лінолева  (С  18:2),  ліноленова  (С  18:3),  олеїнова  (С18:1),  гондоїнова 

(С20:1),  пальмітинова  (С16:0)  та  нервонова  (С24:1)  кислоти.  Відповідно,  для 

порівняння восьми форм природньої флори  і восьми селекційно‐генетичних 

форм, брали до уваги деякі жирні кислоти, перелічені вище.  

В  результаті  хроматографічного  аналізу  було  виявлено,  що 

концентрація ерукової кислоти була найвищою поміж інших жирних кислот. 

У  природних  формах  концентрація  варіювала  у  межах  36‐43  %.  Найнижча 

концентрація  ерукової  кислоти  (36,88 %)  виявилася  в  формі  BC NPF‐5,  а 

найвища  (43,64 %)  була  отримана  у  зразку  BC NPF‐7.  У  той  самий  час  серед 

нових  селекційно‐генетичних  форм  найвищою  концентрацією  ерукової 

кислоти  (45,87 %)  відзначилась  форма  BC SCF‐4,  а  найнижче  значення 

(40,59 %) було зареєстроване у зразку BC SCF‐1. Ерукова кислота  (C22:1, ω‐9, 

EA)  є  довголанцюговою  мононенасиченою  жирною  кислотою,  яка  є 

важливим  олеохімічним  продуктом  з  широким  спектром  застосувань  у 

металургії, машинобудуванні, гумовій промисловості, хімічній промисловості 

та в інших галузях через свою гідрофобність і водостійкість (Wang et al., 2022). 

Крім того, неїстівний характер олії з еруковою кислотою робить її важливою 

біопромисловою  культурою,  яку  можна  використовувати  для  виробництва 

біореактивних палив, де 22‐вуглецевий ланцюг олії може бути розщеплений 

на  два  біопаливних  вуглеводні,  тим  самим  подвоюючи  вихід  палива  для 

кожної молекули ерукової кислоти (Hagos et al., 2020).  



143 

Другою  за  відсотковим  співвідношенням  потрібно  відмітити  лінолеву 

кислоту,  концентрації  якої  варіювали  у  межах  15‐18  %.  Хроматографічний 

аналіз показав, що  серед форм  із природної флори найнижча концентрація 

лінолевої  (16,19 %)  кислоти  була  отримана  з  форми  BC NPF‐7,  а  найвища 

(18,25 %) була зареєстрована у  зразку BC NPF‐5. Суттєво не вирізнялись нові 

селекційно‐генетичні  форми  ефіопської  гірчиці  за  концентрацією  лінолевої 

кислоти. Найменша концентрація (15,67 %) була відмічена у форми BC SCF‐2, 

а найвища (18,84 %) – у генотипа BC SCF‐3. 

Ще однією поліненасиченою жирною кислотою є ліноленова кислота, 

вміст  якої  в  досліджуваних  природніх  формах  ефіопської  гірчиці  склав  у 

середньому  12 %,  де  в  нових  селекційно‐генетичних  формах  варіював  у 

межах 11‐13 %. Необхідно зазначити, що олії, багаті на поліненасичені жирні 

кислоти,  такі  як лінолева  та ліноленова кислоти, мають важливі промислові 

застосування  як  сикативні  олії  у  виробництві  фарб  та  покриттів,  а  також  у 

розробці  фармацевтичних  і  нутрицевтичних  препаратів  (Nabloussi  et  al., 

2008).Також олії,  багаті  на  лінолеву  кислоту,  використовуються  як  сировина 

для  виробництва  кон'югованої  лінолевої  кислоти,  нового  терапевтичного 

нутрієнта  з  багатообіцяючими  антиоксидантними  і  протипухлинними  влас‐

тивостями. Ця жирна кислота також має важливе застосування як компонент 

косметичних продуктів для догляду за шкірою (Nabloussi et al., 2008). 

Наші  дослідження  жирно‐кислотного  складу  гірчиці  ефіопської 

демонструють  значний  вміст  ще  однієї  важливої  кислоти  –  олеїнової.  Її 

концентрація у формах з природної флори знаходилась у діапазоні 7‐9 %, де 

найвищий  рівень  олеїнової  кислоти  (9,30 %)  був  зареєстрований  у 

зразку BC NPF‐2,  а  найнижчий  вміст  (7,90 %)  –  мала  форма  BC NPF‐6.  Для 

порівняння, нові селекційно‐генетичні форми мають майже ідентичний вміст 

олеїнової кислоти з найнижчими значеннями 7,77 % та 7,74 %, відміченими у 

формах BC SCF‐3 і BC SCF‐4 відповідно. Зразки 10‐SCF, 13‐SCF, 14,‐SCF 15‐SCF та 
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16‐SCF характеризувались концентраціями олеїнової кислоти у межах 9,11 %‐

9,57 %.  Олеїнова  кислота  –  це  мононенасичена жирна  кислота  омега‐9,  що 

міститься  у  більшості  рослинних  і  тваринних  джерел,  становить  понад  90 % 

мононенасичених жирів цис‐ізомеру в раціоні людини  (Velasco et al.,  2003). 

Вона  знижує  рівень  холестерину  і  тригліцеридів  та  покращує  в'язкість 

кров'яних клітин (Nabloussi et al., 2008). Олеїнова кислота є стабільнішою до 

тепла  та  окиснення,  ніж лінолева  кислота,  і  складає  46,00‐66,03 % ріпакової 

олії  (Shen  et  al.,  2023).  Олеїнова  кислота  вважається  фітоз'єднанням,  яке 

може  покращувати  стан  серцево‐судинної  системи.  Оскільки  лінолева 

кислота має ще один олефіновий  зв'язок, порівняно  з олеїновою кислотою, 

антиоксидантний  ефект  лінолевої  кислоти  кращий,  ніж  у  олеїнової  кислоти. 

Лінолева  кислота  є  харчовим  компонентом,  оскільки  вона  є  незамінною 

жирною  кислотою,  важливою  для  підтримки  організму  людини.  Лінолева 

кислота  корисна  для  підтримки  стану  шкіри  людини,  імунної  системи, 

клітинних  мембран  і  синтезу  ейкозаноїдів  (Shen  et  al.,  2023).  З  огляду  на 

отримані  результати  можна  зазначити,  що  гірчиця  ефіопська  має  відносно 

низький  вміст  олеїнової  кислоти,  особливо  в  порівнянні  з  неїстівною 

еруковою кислотою. Для можливого  використання фітосировини  у  харчовій 

промисловості необхідна подальша селекція та гібридизація для збільшення 

вмісту їстівних жирних кислот.  

Сьогодні  багато  фермерів  і  дослідників  активно  шукають  і  віддають 

перевагу  більш  витривалим  олійним  культурам  роду  Brassica  (Hagos  et  al., 

2020),  таким  як  гірчиця  ефіопська,  яка  може  витримувати  дуже  вразливі 

екологічні  умови,  навіть  у  районах,  де  не  ростуть  інші  культури  (тобто  на 

маргінальних  землях).  Тому  це  одна  з  найцікавіших  культур  родини 

Brassicaceae,  яка  може  використовуватися  нині  для  енергетичних  цілей  у 

середземноморських  регіонах  (Hagos  et  al.,  2020),  а  також  може  бути 

придатною  для  маргінальних  земель  і  забруднених  районів,  оскільки  є 
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рослиною  з  сильно  вираженими фіторемедіаційними  властивостями  (Hagos 

et  al.,  2020).  Також  виявлено,  що  культура  має  кращу  агроекологічну 

адаптивність  і  продуктивність  –  у  порівнянні  з  ріпаком  (Brassica  napus)  та 

гірчицею індійською (Brassica juncea) – за несприятливих екологічних умов, і 

навіть  за  несучасних  систем  землеробства  (Hagos  et  al.,  2020).  Це  бажано, 

оскільки  виробники  можуть  культивувати  цю  рослину  без  особливих 

труднощів  з  витратами  на  виробництво,  а  також  можуть  опосередковано 

розвивати екологічно стійкий бізнес (Mohdaly et al., 2008). 

Гірчиця  ефіопська  є  нині  новою  перспективною  енергетичною 

культурою  для  більшості  середземноморських,  аридних  та  напіваридних 

кліматичних країн (Marillia et al., 2013; Hagos et al., 2020),  також – для України 

(Рахметов  та  ін.,  2024).  Фактично,  наявність  високих  рівнів  урожайності 

вимагає менше ресурсів, а здатність адаптуватися та протистояти абіотичним 

і  біотичним  стресам  робить  її  цінною  з  точки  зору  агрономічного  та 

енергетичного  балансу.  Наприклад,  її  адаптація  значно  розширилася  і 

збільшила  її  виробництво  в  деяких  посушливих  районах  США  (Каліфорнія), 

Канади,  Італії,  Іспанії  та  країн  Південної  Азії  і  України  –    через  зростаючий 

попит  на  біоенергію  та  олійні  культури  в  цих  країнах  (Hagos  et  al.,  2020; 

Cardone et al., 2003; Рахметов та ін., 2024) і вплив глобальної зміни клімату на 

стале сільськогосподарське виробництво та екологічні системи. 

 
5. 6. Мінеральний склад рослин Brassica carinata 

 
Результати проведених досліджень свідчать про те, що загальний вміст 

золи у рослинних зразках генотипів B. carinata у період стеблування‐початок 

бутонізації  становив  10,49–13,05 %,  кальцію  –  1,82–2,49 %,  фосфору  –  1,31–

1,93 % (рис. 5. 44). 
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Рис. 5. 44. Загальний вміст золи, фосфору та кальцію у надземній масі 
генотипів Brassica carinata в період стеблування‐початок бутонізації 

 
Загальний вміст золи у рослинних зразках генотипів B. carinata у період 

стеблування‐початок бутонізації становив 5,53–7,87 %, кальцію – 1,71–2,63 %, 

фосфору – 1,12–1,82 % (рис. 5. 45). В цілому середнє значення вмісту золи у 

період  стеблування‐початок  бутонізації  становило  11,46 %,  а  в  період 

плодоношення – 6,54 %  (сумарно по всіх  генотипах), що у 1,75 рази менше, 

ніж  під  час  стеблування‐початок  бутонізації  рослин.  Вміст  кальцію  у  період 

стеблування‐початок  бутонізації  та  плодоношення  у  досліджуваних  рослин 

суттєво  не  відрізнявся  і  в  середньому для  усіх  генотипів  становив  2,07 %  та 

2,20 % відповідно.  

 
Рис. 5. 45. Загальний вміст золи, фосфору та кальцію у надземній масі 

генотипів Brassica carinata у період плодоношення 
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Відомо,  що  в  рослинній  сировині  (надземній  та  підземній  фітомасі) 

виявлено близько 78  елементів  із  108  відомих  у  природі. Для нормального 

росту  і  розвитку  рослини  умовно  виділяють  дві  групи  елементів:  необхідні 

(С, О, Н, N, P, K, Ca, Mg, Fe, S, Cu, B, Mo, Zn) та умовно необхідні (Li, Ag, Sr, Cd, 

Al, Si, Ti, Pb, Cr, Se, F, Ni). Тому визначення вмісту макро‐  і мікроелементів у 

рослинній  сировині  має  важливе  фундаментальне  та  прикладне  наукове 

значення  з  точки  зору  вивчення  фізіолого‐біохімічних  механізмів  стійкості 

рослин  до  дії  екологічних  факторів  довкілля,  а  також  визначити  напрями 

безпечного та економічно‐ефективного використання фітосировини. 

З  огляду  на  вище наведені  дані  проведено  порівняльну  оцінку  різних 

генотипів  рослин  B.  carinata  на  вміст  макро‐,  мезо‐  і  мікроелементів  (рис. 

5. 46). Враховуючи те, що бор та фосфор важливі елементи, які забезпечують 

оптимальний ріст рослин, накопичення цукрів, вуглеводний і білковий обмін 

та  метаболізм,  синтез  білків,  проростання  пилку  і  запліднення  квіток, 

підвищують  врожайність  та  його  якість,  було  з’ясовано,  що  серед 

досліджуваних генотипів найвищим вмістом цих елементів характеризувався 

зразок BC NPF‐1 (67,7 мг/кг – бор та 62,3 мг/кг – фосфор).  

 
Рис. 5.46. Вміст росторегулюючих елементів 

 у різних генотипів рослин B. carinata 
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У решти генотипів спостерігається значно нижчий вміст бору (у 2,3–5,7 

рази), хоча за тих самих умов вміст фосфору в окремих генотипів знижувався 

лише у 1,5 рази, а також у інших генотипів перевищував в окремих випадках 

близько 3,5 рази.  

У  порівнянні  з  результатами  досліджень  Zeiner  et  al.  (2022)  в  умовах 

України генотип BC NPF‐1 накопичував бору менше в 1,2 рази, а різниця між 

найменшим показником (зразок BC NPF‐6) сягала у 6,7 рази. 

Мідь  і  цинк  є  важливими  компонентами для фотосинтезу  та дихання, 

фіксації  азоту  й  синтезу  білків,  стійкості  до  хвороб,  відповідають  за 

зв’язування  сонячної  енергії,  синтезують  ауксин,  запобігаючи  руйнуванню 

клітин  та  сприяють  активації  ростових  процесів.  За  вмістом  міді  можна 

виділити дві групи генотипів: гіперакумулянти – BC NPF‐1, BC NPF‐2 та BC NPF‐

3; гіпоакумулянти – BC NPF‐4, BC NPF‐5, BC NPF‐6, BC NPF‐7 і BC NPF‐8. Щодо 

накопичення цинку також виділено дві групи генотипів: гіперакумулянти – BC 

NPF‐1, BC NPF‐3, BC NPF‐7; гіпоакумулянти – BC NPF‐2, BC NPF‐4, BC NPF‐5, BC 

NPF‐6,  BC  NPF‐8.  У  дослідженні  Zeiner  et  al.  (2022)  рослини  B.  carinata 

накопичують мідь на рівні  5,97 мг/кг,  а  також цинк  –  27,2 мг/кг, що цілком 

корелює з отриманими даними у зразках, інтродукованих у НБС. 

Цінними елементами,  які  відіграють  важливу роль  у  процесі  дихання, 

фотосинтезі,  синтезі  білків,  транспортуванню  води  та  вуглеводів  рослин  є 

залізо  і  натрій.  Аналіз  вмісту  цих  елементів  дозволив  виявити,  що  усі 

генотипи накопичували їх по‐різному, серед яких і надалі найвищим вмістом 

вирізнявся генотип BC NPF‐1, дещо менші показники демонстрували BC NPF‐2 

та BC NPF‐3 (рис. 5. 47). За рівнем вмісту заліза здійснено розподіл генотипів 

на  наступні  групи:  високого рівня  (понад  200 мг/кг)  –  BC NPF‐1;  середнього 

рівня  (від  100 до  200 мг/кг)  –  BC NPF‐2,  BC NPF‐3  та  BC NPF‐5;  низького  (до 

100 мг/кг) – BC NPF‐4, BC NPF‐6, BC NPF‐7, BC NPF‐8. За рівнем вмісту натрію 

досліджувані  генотипи  було  розподілено  наступним  чином:  високого  рівня 
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(понад 500 мг/кг) – BC NPF‐1, BC NPF‐4, BC NPF‐7; середнього рівня (від 250 до 

500 мг/кг) – BC NPF‐3 та BC NPF‐5; низького рівня  (до 250 мг/кг) – BC NPF‐2, 

BC NPF‐5, BC NPF‐8. Щодо кількісного накопичення натрію і заліза у рослин B. 

carinata  у  дослідженні  Zeiner  et  al.  (2022)  відзначається  про  рівень  Fe  – 

101 мг/кг та Na – 1656 мг/кг фітосировини. 

 
Рис. 5. 47. Вміст заліза і натрію у різних генотипів рослин B. carinata 
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лій та кальцій має важливе значення для належної роботи фотосинтетичного 

апарату,  забезпечення  продуктивності  як  вегетативної маси, так і насіння.  Аналіз 

елементного  складу  також  показує  те,  що  генотип BC NPF‐1  характеризується 

найбагатшим вмістом з‐поміж досліджуваних інтродуцентів (рис. 5. 48).  
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Рис. 5. 48. Вміст елементів‐регуляторів  

продуктивності різних генотипів рослин B. carinata 
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15 тис. мг/кг) – BC NPF‐1; дуже низького (до 5 тис. мг/кг) – BC NPF‐2 – BC NPF‐

8.  Щодо  групи  високого  (від  10  до  15  тис.  мг/кг)  та  середнього  (від  5  до 

10 тис. мг/кг)  вмісту  сірки  генотипів  не  відмічено.  Відомо,  що  рослини 

B. carinata акумулюють Mg – понад 11 тис. мг/кг, K – в межах 41,5 тис. мг/кг, а 

Ca – близько 8100 мг/кг (Zeiner et al., 2022). Щодо рівня накопичення сірки S 

даних немає. 

Разом  із  необхідними  елементами  було  простежено  здатність  рослин 

до накопичення умовно необхідних елементів (рис. 5. 49‐5. 51). Варто зазна‐

чити, що в цілому за сукупністю таких елементів як Ba, Cd, Co, Cr, Ni, Pb, Ti, V 

найвищим вмістом вирізнявся й надалі  генотип BC NPF‐1,  а дещо меншими 

BC  NPF‐2  та  BC  NPF‐3  (див.  рис.  5.  48).  За  вмістом  барію  виділено  наступні 

групи  інтродуцентів:  високовмісні  (понад  7  мг/кг)  –  BC  NPF‐2  та  BC NPF‐6; 

середнім вмістом (від 5 до 7 мг/кг) – BC NPF‐1, BC NPF‐3, BC NPF‐4, BC NPF‐7, 

BC  NPF‐8;  низьким  вмістом  (до  5  мг/кг)  –  BC  NPF‐5.  За  вмістом  решти 

елементів  (Cd,  Co,  Cr,  Ni,  Pb,  Ti),  узагальнюючи  отримані  дані,  можна 

розподілити генотипи на дві групи: гіперакумулянти – BC NPF‐1, BC NPF‐2, BC 

NPF‐3  (де  генотип  BC  NPF‐1  переважає  за  показниками  усіх  елементів)  та 

гіпоакумулянти  –  решта  досліджуваних  генотипів.  Отримані  дані  цілком 

співставні з відомими результатами досліджень інших представників родини 

Brassicaceae (Golubkina et al., 2023; Cockson et al., 2021).  

Накопичення  кремнію  та  алюмінію  у  рослинній  сировині  сприяє 

підвищенню  стійкості  рослин  до  дії  різноманітних  біотичних  і  абіотичних 

чинників довкілля (Pandey et al., 2016; Meena et al., 2016). 
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Рис. 5.49. Мікроелементний склад різних генотипів рослин B. carinata 

 

 
Рис. 5.50. Вміст мікроелементів формуючих стресостійкість рослин B. carinata 
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Рис. 5.51. Вміст мангану і стронцію у рослин B. carinata. 
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радіоактивних  елементів,  тому  важливо  вивчати  здатність  рослин  до 

накопичення  цього  елементу  у  фітомасі.  Надалі  це  дозволить  здійснювати 

підбір  культур  для  використання  у  фіторемедіації  задля  очищення 

забруднених територій. Цікаво, що в дослідженні Zeiner et al. (2022) в умовах 

Швеції  рослини  B.  carinata  накопичували  стронцію  на  рівні  42,5 мг/кг,  що 

цілком  співставно  з  отриманими  даними  у  наших  умовах.  Щодо  вмісту 

мангану,  то  в  умовах  інтродукції  у  НБС  цей  показник  менший  –  від  4,1  до 

6,8 рази. 
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РОЗДІЛ 6. 

РОЛЬ СУЧАСНИХ БІОЛОГО‐ЕКОЛОГІЧНИХ ТА АЛЕЛОПАТИЧНИХ 
МЕТОДІВ У ПОЛІПШЕННІ РОСТОВИХ ПРОЦЕСІВ, ПІДВИЩЕННІ 

ПРОДУКТИВНОСТІ ОЛІЙНИХ РОСЛИН (РИЖІЮ, ГІРЧИЦІ ТА РІПАКУ) 
 

 
 

 
6. 1. Вплив кремнієвмісних добрив на ріст, 
розвиток і продуктивність олійних рослин  

 
Внаслідок  проведених  досліджень  встановлено,  що  внесення 

кремієвмісних добрив під  сівбу рижію,  гірчиці  та ріпаку в цілому позитивно 

впливає на ростові показники і продуктивність рослин).  

За одночасної сівби насіння рижію,  гірчиці  та ріпаку  (ІІ декада травня) 

розвиток  рослин  відбувався  по‐різному.  Рижій  як  скоростигла  рослина 

розвивався  швидше  і  до  проведення  першого  комплексного  аналізу  був  у 

фазі початку бутонізації, а ріпак та гірчиця – у вегетативній фазі. В цей період 

вплив  кремнієвмісних  добрив  порівняно  з  контролем  уже  був  очевидним 

(рис. 6. 1).  

 

Рис. 6. 1. Висота рослин і довжина кореня рижію, гірчиці та ріпаку у період 
вегетації залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
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Висота рослин і довжина кореня рижію, гірчиці та ріпаку в досліджений 

період  за  застосування  кремнієвмісних  сполук  (КС)  була  вищою  ніж  у 

контролі  (К).  Позитивну  роль  кремнієвмісних  добрив  на  зростання 

морфометричних  параметрів  рослин  та  урожайності  відзначено  у 

дослідженнях  R.  Crooks,  P.  Prentice  (2011),  М.  Selivanova  та  ін.  (2020), 

R. Tayade та інших (2022). 

Аналогічна  закономірність  встановлена  за  результатами  досліджень 

кількості  і  розміру  листків,  діаметру  стебла  в  основі,  за  масою  надземної 

частини  і  коренів  рослин  рижію,  гірчиці  та  ріпаку.  Найвищі  показники 

рослини мали у варіантах із внесенням кремнієвмісних добрив (рис. 6. 2‐6. 5). 

 

 

Рис. 6. 2. Кількість листків на рослині рижію,  
гірчиці та ріпаку в період вегетації залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
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Рис. 6. 3. Розміри листків на рослині  рижію,  
гірчиці та ріпаку у період вегетації залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

 
 

Рис. 6. 4. Діаметр стебла в основі рослин рижію, гірчиці та ріпаку в період 
вегетації залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
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Рис. 6. 5. Надземна маса та маса коренів рослин  
рижію, гірчиці та ріпаку в період вегетації залежно від варіанту досліду (п=10) 

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

До  наступного  періоду  комплексного  аналізу  рослини  залежно  від 

видових  особливостей  та  застосування  добрив  знаходилися  у  різних  фазах 

розвитку:  рижій  –  кінець  квітування‐плодоношення;  ріпак  –  квітування; 

гірчиця – у фазі бутонізації (рис. 6. 6). У цей період різниця між варіантами з 

внесенням  добрив  та  контролем  за  висотою  рослин  була  суттєвою  у  всіх 

культур:  рижію  –  2,5  см,  гірчиці  –  9,5,  ріпаку  –  5,8  см.  Значуща  різниця 

встановлена між варіантами за довжиною коріння.  

 

Рис. 6. 6. Висота рослин і довжина кореня рижію,  
гірчиці та ріпаку, залежно від фази розвитку і варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
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Аналогічно попередньому періоду встановлена суттєва різниця у різних 

культур між  удобреними  та  неудобреними  варіантами  за  кількістю  і  розмі‐

рами листків, бічних пагонів  І порядку, діаметром стебла в основі, за масою 

стебел, листків і коренів рослин рижію, гірчиці та ріпаку (рис. 6. 7‐6. 10). 

 

Рис. 6. 7. Діаметр в основі рослин рижію,  
гірчиці та ріпаку залежно від фази розвитку і варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

 

Рис. 6. 8. Кількість бічних пагонів і листків на рослині  
рижію, гірчиці та ріпаку залежно від фази розвитку і варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
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Рис. 6. 9. Розмір листків рослин рижію, гірчиці та ріпаку  
залежно від фази розвитку і варіанту досліду  

(КС – внесення кремнієвмісних добрив, К –контроль) 
 

 

Рис. 6. 10. Маса листків, стебел і коренів рослин рижію, гірчиці та ріпаку 
залежно від фази розвитку і варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) (n=10 рослин) 
 

До фази плодоношення ростові показники суттєво змінилися у рослин 

ріпаку  та  гірчиці,  особливо  у  варіантах  з  добривом.  У  рижію  суттєвого 

приросту висоти та коренів рослин не відбулося (рис. 6.11 ).   
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Рис. 6. 11. Висота рослин і довжина кореня рослин рижію, гірчиці та ріпаку в 
фазі плодоношення  залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

  В  цілому  в  цей  період  також  зберігається  закономірність  щодо 

суттєвого  впливу  на  основні  ростові  та  продуктивні  показники  рослин 

кремнієвмісних добрив ( 6. 12‐6. 14).  

 

Рис. 6. 12. Кількість бічних пагонів і стручків на рослині 
 рижію, гірчиці та ріпаку у період плодоношення залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
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Рис. 6. 13. Розмір стручків на рослині рижію,  
гірчиці та ріпаку у фазі плодоношення залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

 

Рис. 6. 14. Надземна маса і маса коренів рослин рижію, 
 гірчиці та ріпаку в фазі плодоношення залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

У  фазі  дозрівання  рослин  у  досліді  встановлено  закономірно 

позитивний вплив кремнієвмісних добрив на морфометричні та продуктивні 

показники.  Рижій,  гірчиця  і  ріпак  мали  вищі  показники  висоти  рослин, 
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удобрених  варіантах,  ніж  у  контролі  –  за  певними  винятками  (рис.  6. 15‐

6. 20). 

 
 

Рис. 6. 15. Висота рослин і довжина кореня 
 рижію, гірчиці та ріпаку у фазу достигання залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

 
 

Рис. 6. 16. Діаметр стебла в основі рослин рижію, гірчиці  
та ріпаку в фазі дозрівання залежно від варіанту досліду  
(КС – внесення кремнієвмісних добрив, К – контроль) 
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Рис. 6. 17. Кількість бічних пагонів і стручків на рослині 
 рижію, гірчиці та ріпаку в фазі дозрівання залежно від варіанту досліду 

 (КС – внесення кремнієвмісних добрив, К – контроль) 
 

 
 

Рис. 6. 18. Розмір стручків на рослинах рижію,  
гірчиці та ріпаку в фазі дозрівання залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
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Рис. 6. 19. Кількість насінин у стручку на рослинах рижію, 
 гірчиці та ріпаку в фазі дозрівання залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

 
 

Рис. 6. 20. Маса надземної частини, насіння і коренів 
 рижію, гірчиці та ріпаку залежно від варіанту досліду  
(КС – внесення кремнієвмісних добрив, К – контроль) 

 
За  масою  1000  насінин  рижію,  гірчиці  та  ріпаку  встановлено  суттєву 

різницю  між  варіантами  досліду.  Зокрема  внесення  кремієвмісних  добрив 

позитивно вплинуло на крупність насіння  і маса 1000 насінин була більшою 

(рис. 6.21). 
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Рис. 6. 21. Маса 1000 насінин рижію, гірчиці  
та ріпаку залежно від варіанту досліду  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

Різниця між удобреними  та неудобреними варіантами за масою 1000 

насінин  у  рижію  становила  0,31  г,  гірчиці  –  0,12,  ріпаку  –  0,09  г.  Варто 

зазначити, що кремнієвмісні добрива здійснили суттєвий вплив на розміри  і 

масу  1000  насінин,  що  є  важливими  показниками,  які  впливають  на 

продуктивність рослин.  

Таким  чином,  результати  проведеного  аналізу  свідчать  про  те, що  до 

завершення вегетації  вплив кремнієвмісних добрив суттєво відобразився на 

всіх ростових  і продуктивних показниках капустяних культур. Приріст висоти 

рослин  становив  3,7 %  у  рижію,  10,5 %  –  у  ріпака  та  16,2 %  –  у  гірчиці.  Під 

впливом добрив значно збільшилася кількість насінин у стручку: на 11,3 % у 

рижію;  на  13,7 %  –  у  ріпака;  на  42,7 %  –  у  гірчиці.  Маса  1000  насінин 

аналогічно зросла у ріпака на 3,3 %, у гірчиці – на 5,1 % і у рижію – на 18,4 %. 

Приріст надземної маси за умови впливу добрива сягав 9,0 % у ріпака, 16,7 % 

– рижію, 18, 8% – у гірчиці. Насінна продуктивність за цих умов збільшилася у 

ріпака на 5,4 %, гірчиці – на 10,6 %, у рижію – на 16,7 %, що доводить  високу 

ефективність застосування кремнієвмісних добрив.  
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6. 2. Біохімічний склад рослин рижію, гірчиці та ріпака 

Упродовж  вегетаційного  періоду  було  здійснено  аналіз  динаміки 

накопичення  абсолютно  сухої  речовини  у  надземній  фітомасі  рослин 

Camelina  sativa Сrantz  f.  annua,  cv. Peremoha, Brassica  carinata  (ВФ‐відібрана 

форма)  та  Brassica  napus  annua  D.C.,  cv.  Rimal  залежно  від  використання 

кремнієвмісних  сполук.  Варто  зазначити, що  рослини  по‐різному  реагували 

на внесення добрив, зокрема Camelina sativa Сrantz f. annua, cv. Peremoha у 

фазі  плодоношення  і  дозрівання  більше  акумулював  у  надземній  фітомасі 

абсолютно  суху  речовину  у  варіанті  досліду  –  без  використання 

кремнієвмісних  сполук  (рис.  6. 22).  Можна  припустити,  що  для  даного 

генотипу такі мікродобрива спричиняють порушення фізіологічних процесів, 

або можливо варто підібрати оптимальну концентрацію при внесенні в ґрунт, 

оскільки у дослідженнях Teimoori  et  al.  (2023) продемонстровано зростання 

накопичення  сухої  речовини  в  надземній  фітомасі  за  умов  позакореневого 

підживлення рослин кремнієвими добривами. 

 
Рис. 6. 22. Вміст сухої речовини у рослин  

Camelina sativa Сrantz f. annua, cv. Peremoha залежно від фази 
розвитку та використання кремнієвмісних сполук 

(КВ‐ПП – квітування‐початок плодоношення;  
П – плодоношення; Д – дозрівання насіння) 
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Рослини  Brassica  carinata  (ВФ)  виявилися  ще  більш  чутливими  до 

кремнієвмісних  сполук  і  накопичували  значно  менше  сухої  речовини  при 

підживленні порівняно з контролем  (рис. 6. 23).  З огляду на це  також варто 

попрацювати  з  концентраціями  цих  сполук  маючи  на  меті  пошук 

оптимальних елементів технології підживлення. Для різних генотипів рослин 

Brassica  carinata  позитивним  рішенням  щодо  підвищення  врожайності 

надземної біомаси та накопичення біологічно активних сполук, у тому числі – 

сухої  речовини,  є  внесення  азотовмісних  добрив  (Bashyal  et  al.,  2021).  У 

дослідженнях Seepaul та  ін.  (2019) накопичення абсолютно сухої речовини в 

надземній  частині  у  різні  фази  розвитку  забезпечувалось  на  рівні  наших 

результатів. 

 
Рис. 6. 23. Вміст сухої речовини у рослин Brassica carinata  

(ВФ‐відібрана форма) залежно від фази розвитку та використання 
кремнієвмісних сполук 

 (Б – бутонізація; П – плодоношення; Д – достигання насіння) 
 

Порівнюючи  з  попередніми  видами  позитивний  вплив  підживлення 

рослин  кремнієвмісними  сполуками  відмічено  у  Brassica  napus  annua  D.C., 

cv. Rimal (рис. 6. 24).  
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Рис. 6. 24. Вміст сухої речовини у рослин Brassica napus annua D.C., cv. Rimal 

залежно від фази розвитку та використання кремнієвмісних сполук 
(К – квітування; П – плодоношення; Д – дозрівання насіння) 

 
Так у фазі квітування та плодоношення вміст сухої речовини був майже 

однаковим у варіанті без підживлення та з підживленням, а у фазі дозрівання 

цей  показник  був  значно  вищим  за  умов  використання  кремнієвмісних 

сполук. Варто зазначити, що подібні дослідження нами в літературі не зафік‐

совано,  є  дані  результатів  досліджень  Bano  та  інших  (2022),  які  відмічають 

позитивний вплив на накопичення абсолютно сухої речовини у вегетативних 

та генеративних органах рослин у випадку використання миш’яку.  

Дослідження вмісту цукрів у надземній частині рослин Camelina sativa 

Сrantz  f. annua,  cv.  Peremoha  (рис.  6. 25)  підтверджує  припущення  того, що 

рослини  даного  генотипу  піддаються  стресу,  оскільки  при  використанні 

кремнієвмісних  сполук  спостерігається  зростання  рівню  загального  вмісту 

цукрів та моноцукрів, що свідчить про зміни характеру фізіолого‐біохімічних 

процесів.  Це  пов’язано  із  захистом  білкових  структур  організму  рослин 

(Ahmad  et  al.,  2020).  У  цьому  ж  дослідженні  Ahmad  та  інших  (2020) 

спостерігається також підвищення цукрів від 2 до 6 % за стресових умов. 
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Рис. 6. 25. Вміст вуглеводнів у рослин  

Camelina sativa Сrantz f. annua, cv. Peremoha залежно від фази 
розвитку та використання кремнієвмісних сполук 

(КВ‐ПП – квітування‐початок плодоношення;  
П – плодоношення; Д – дозрівання насіння) 

 
Встановлено  значне  зростання  вмісту  вуглеводнів  у  надземній 

фітомасі  рослин  упродовж  вегетаційного  періоду  майже  у  два  рази  у  фазі 

бутонізації  та  в  межах  17 %  у  фазі  плодоношення  і  дозрівання  насіння  – 

порівняно  з  контролем  (рис.  6. 26),  що  вочевидь  може  бути  викликано 

підвищенням чутливості рослин до дії стресових чинників довкілля (Mezgebe 

&  Azerefegne,  2021).  Загальний  вміст  цукрів  у  надземній  фітомасі  Brassica 

carinata за даними Kumar та інших (2020) коливається від 7,5 до 10 %.  

 
Рис. 6. 26. Вміст вуглеводнів у рослин Brassica carinata (ВФ‐відібрана 

форма) залежно від фази розвитку та використання кремнієвмісних сполук 
(Б – бутонізація; П – плодоношення; Д – дозрівання насіння) 
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На  відміну  від  інших  культур  зростання  цукрів  у  надземній  фітомасі 

рослин Brassica napus annua D.C., cv. Rimal було незначним (у межах 10‐15 %) 

(рис. 6. 27). Це свідчить про позитивний вплив кремнієвмісних сполук на ріст і 

розвиток  даних  рослин.  Варто  зазначити,  що  вміст  цукрів  у  рослинній 

сировині співпадає з даними, отриманими Jamshidi Zinab та іншими (2023).  

 
Рис.  6. 27.  Вміст  вуглеводнів  у  рослин  Brassica  napus  annua  D.C., 

cv. Rimal залежно від фази розвитку та використання кремнієвмісних сполук 
(К – квітування; П – плодоношення; Д – дозрівання насіння) 

 

Досліджено вміст аскорбінової кислоти у рослин Camelina sativa Сrantz 

f.  annua,  cv.  Peremoha.  Встановлено,  що  найбільший  вміст  вітаміну  С  був  у 

рослин  під  час  квітування‐початку  плодоношення  –  у  варіанті  без  обробки 

кремнієвмісними  сполуками  (рис.  6. 28).  За  внесення  цих  добрив 

спостерігали  незначне  зростання  аскорбінової  кислоти  у  порівнянні  з 

контролем,  тому  очевидно  накопичення  вітаміну  С  не  залежить  від 

підживлення  рослин  кремнієвмісними  сполуками.  Як  свідчать  результати 

досліджень  Ahmad  та  інших  (2021)  накопичення  аскорбінової  кислоти  у 

Camelina  sativa  та Brassica  napus  –  на  одному  рівні  та  коливається  в межах 

150 мг%. 
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Рис. 6. 28. Вміст аскорбінової кислоти у рослин  

Camelina sativa Сrantz f. annua, cv. Peremoha залежно від фази 
розвитку та використання кремнієвмісних сполук 

(КВ‐ПП – квітування‐початок плодоношення; П – плодоношення;  
Д – дозрівання насіння) 

 

Подібна  тенденція  щодо  накопичення  аскорбінової  кислоти  у 

надземній  частині  спостерігається  також  й  у  рослин  Brassica  carinata  (ВФ‐

відібрана форма). У фазі бутонізації цей показник був найвищим – у варіанті 

без внесення мікродобрив, а у фазі плодоношення та дозрівання насіння цей 

же  показник  був  вищим  у  варіанті  з  внесенням  кремнієвмісних  сполук 

порівняно  із  контролем  (рис. 6. 29).  Результати  досліджень  Hailemariam,  & 

Wudineh  (2020)  свідчать,  що  рослини  Brassica  carinata  здатні  накопичувати 

аскорбінову кислоту до 50 мг/100 мл у фазі квітування. 

 
Рис. 6. 29. Вміст аскорбінової кислоти у рослин 

 Brassica carinata (ВФ‐відібрана форма) залежно від фази розвитку  та 
використання кремнієвмісних сполук 

(Б – бутонізація; П – плодоношення; Д – дозрівання насіння) 
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Протилежні  результати  порівняно  з  вище  дослідженими  видами 

забезпечували рослини Brassica napus annua D.C., cv. Rimal (рис. 6. 30). Так у 

варіанті  з  внесенням кремнієвмісних  сполук  спостерігаємо  зростання вмісту 

аскорбінової кислоти у фазі квітування та плодоношення. Разом із тим варто 

зазначити, що з отриманими даними Ahmad та інших (2021), рослини в наших 

дослідженнях  вирізнялися  підвищеним  вмістом  вітаміну  С  у  надземній 

частині. 

 
Рис. 6. 30. Вміст аскорбінової кислоти у рослин  

Brassica napus annua D.C., cv. Rimal залежно від фази розвитку та 
використання кремнієвмісних сполук 

(К – квітування; П – плодоношення; Д – дозрівання насіння) 
 

Виявлено, що  за  внесення  кремнієвмісних  сполук  у  рослин Camelina 

sativa  Сrantz  f.  annua,  cv. Peremoha  зростає  вміст  дубильних  речовин  та 

знижується титрована кислотність у фазі квітування – початок плодоношення, 

в інші фази ці показники менші у порівнянні із контролем (рис. 6. 31). Відомо, 

що вміст дубильних речовин і титрованої кислотності коливається в межах від 

0,5  до  1,5 %,  що  повною  мірою  цілком  співставне  з  вмістом  цих  сполук  у 

наших варіантах дослідів (Mondor, & Hernández Álvarez, 2022). 
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Рис. 6. 31. Титрована кислотність та вміст дубильних  

речовин у рослин Camelina sativa Сrantz f. annua, cv. Peremoha 
залежно від фази розвитку та використання кремнієвмісних сполук 

(КВ‐ПП – квітування‐початок плодоношення; П – плодоношення;  
Д – дозрівання насіння) 

 

Встановлено,  що  рослини  Brassica  carinata  (ВФ‐відібрана  форма)  по 

іншому  накопичували  дубильні  речовини  та  титровану  кислотність  у  над‐

земній частині (рис. 6. 32). Так у варіанті з внесенням кремнієвмісних сполук 

спостерігали  зростання  у  порівнянні  з  контролем  титрованої  кислотності  та 

навпаки  –  зменшення  вмісту дубильних речовин. Щоб  зрозуміти причинно‐

наслідкові зв’язки, варто провести повторні дослідження і випробувати різні 

концентрації  речовини.  Також  варто  зазначити,  що  подібних  досліджень  в 

сучасній науковій літературі ми не знайшли. 

 
Рис. 6. 32. Титрована кислотність і вміст дубильних речовин у рослин 

Brassica carinata (ВФ‐відібрана форма) залежно від фази розвитку та 
використання кремнієвмісних сполук 

(Б – бутонізація; П – плодоношення; Д – дозрівання насіння) 
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Так  само,  як  у  випадку  з  накопиченням  інших  структурно‐функці‐

ональних  та  біологічно  активних  речовин  спостерігаємо  позитивний  вплив 

кремнієвмісних  сполук  на  накопичення  дубильних  речовин  і  титрованої 

кислотності у рослин Brassica napus annua D.C., cv. Rimal (рис. 6. 33). 

 
Рис. 6. 33. Титрована кислотність і вміст дубильних 

 речовин у рослин Brassica napus annua D.C., cv. Rimal залежно від 
фази розвитку  та використання кремнієвмісних сполук 
(К – квітування; П – плодоношення; Д – дозрівання насіння) 

 

Простежено, що рослини Camelina sativa Сrantz f. annua, cv. Peremoha 

також  активніше  накопичують  мінеральні  сполуки  у  варіанті  без  внесення 

кремнієвмісних сполук, що може свідчити про блокування певних механізмів 

обміну  речовин  між  рослиною  та  довкіллям  (рис.  6. 34).  Як  свідчать 

результати досліджень Juodka та інших (2022), вміст цих речовин подібний до 

отриманих даних у наших дослідженнях. 
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Рис. 6. 34. Накопичення мінеральних речовин  

у рослин Camelina sativa Сrantz f. annua, cv. Peremoha залежно від 
фази розвитку та використання кремнієвмісних сполук 

(КВ‐ПП – квітування‐початок плодоношення; П – плодоношення; Д – 
дозрівання насіння) 

 

Рослини Brassica carinata (ВФ‐відібрана форма), на відміну від Camelina 

sativa  Сrantz  f.  annua,  cv. Peremoha,  більше  накопичували  мінеральних 

речовин  у  варіанті  з  внесенням  кремнієвмісних  сполук,  лише  у  фазі 

бутонізації  вміст  золи  у  надземній  частині  був  вищим,  ніж  у  варіанті  без 

внесення мікродобрив  (рис.  6. 35).  Отримані  результати  цілком  співставні  з 

результатами досліджень Nauman та інших (2021). 

 
Рис. 6. 35. Накопичення мінеральних речовин  

у рослин Brassica carinata (ВФ‐відібрана форма) залежно від фази 
розвитку і використання кремнієвмісних сполук 

(Б – бутонізація; П – плодоношення; Д – дозрівання насіння) 
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Дослідження  вмісту мінеральних  речовин  у Brassica  napus  annua  D.C., 

cv. Rimal показав незначну різницю у їх накопичені – у варіантах із внесенням 

кремнієвмісних  сполук  та  без  внесення  (контроль)  (рис.  6. 36).  Це  може 

підтверджувати припущення про позитивну реакцію організму рослин цього 

виду до дії кремнієвмісних добрив. 

 
Рис. 6. 36. Накопичення мінеральних речовин  

у рослин Brassica napus annua D.C., cv. Rimal залежно від фази 
розвитку та використання кремнієвмісних сполук 

(К – квітування; П – плодоношення; Д – дозрівання насіння) 
 

Вміст ліпідів у надземній частині найвищим був у варіанті без внесен‐

ня  кремнієвмісних  сполук  у  фазі  плодоношення,  а  щодо  вільного  азоту  – 

спостерігали зростання за умови внесення добрив (рис. 6. 37). За результата‐

ми досліджень Ahmad та  інших (2021) відомо, що рослини Camelina sativa у 

фазі  плодоношення  здатні  забезпечувати  близько  20 %  ліпідів  і  до  2 % 

вільного азоту. 
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Рис. 6. 37. Вміст ліпідів та вільного азоту  

у рослин Camelina sativa Сrantz f. annua, cv. Peremoha залежно від 
фази рослин і використання кремнієвмісних сполук 

(КВ‐ПП – квітування‐початок плодоношення; П – плодоношення;  
Д – дозрівання насіння) 

 
З’ясовано,  що  у  рослин  Brassica  carinata  (ВФ‐відібрана  форма)  вміст 

ліпідів  і  вільного  азоту  майже  не  залежав  від  внесення  кремнієвмісних 

сполук,  хоча  незначне  зростання  цих  речовин  зафіксовано  у  варіанті  з 

внесенням добрива (рис. 6. 38). Дослідженню вмісту ліпідів і вільного азоту у 

надземній  фітомасі  рослин мало  приділено  уваги,  наявні  дані  в  основному 

спрямовані  на  виявлення  цих  речовин  у  насінні,  тому  відомо,  що  рослини 

Brassica  carinata  здатні  акумулювати  від  27  до  40 %  ліпідів  –  у  в межах  1 % 

вільного азоту (Mohdaly, & Ramadan, 2022). 

 
Рис. 6. 38. Вміст ліпідів та вільного азоту у рослин Brassica carinata (ВФ‐

відібрана форма) залежно від фази і використання кремнієвмісних сполук 
(Б – бутонізація; П – плодоношення; Д – дозрівання насіння) 
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За  використання  кремнієвмісних  сполук  зафіксовано  незначне  зро‐

стання вмісту вільного азоту в надземній частині рослин Brassica napus annua 

D.C.,  cv.  Rimal,  натомість  відбувається  зменшення  вмісту  ліпідів  (рис. 6. 39). 

Отримані нами дані цілком корелюють з даними Gagour та інших (2022). 

 
Рис. 6. 39. Вміст ліпідів і вільного азоту в  

рослин Brassica napus annua D.C., cv. Rimal залежно від фази розвитку і 
використання кремнієвмісних сполук 

(К – квітування; П – плодоношення; Д – дозрівання насіння) 
 

Таким чином, результати досліджень біохімічного складу рослин трьох 

культур  родини  Brassicaceae  (Camelina  sativa  Сrantz  f.  annua,  cv.  Peremoha, 

Brassica  carinata  (ВФ‐відібрана форма)  і Brassica  napus  annua  D.C.,  cv. Rimal) 

дозволили  виявити,  що  використання  добрив  на  основі  кремнієвмісних 

сполук по різному впливає на проходження фізіолого‐біохімічних процесів в 

організмі. Таким чином, найбільш сприятливий вплив кремнієвмісних сполук 

простежувався  у  Brassica  napus  annua  D.C.,  cv.  Rimal,  для  решти  культур 

використання  цих  сполук  спричиняло  чутливість  до  стресових  чинників 

довкілля, що відображалося у різкій відмінності накопичення окремих БАС у 

надземній фітомасі впродовж вегетаційного періоду. 
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6. 3. Післядія кремнієвмісних добрив на другий рік після внесення на 
ростові та фізіолого‐біохімічні особливості рослин родини Brassicaceae  

 

Аналіз лінійних розмірів надземної та підземної частини представників 

Brassicaceae дозволив здійснити загальний розподіл  генотипів на групи рос‐

лин за довжиною кореня (рис. 6. 40): з коротким коренем (до 12 см) – рижій 

посівний (КС), ріпак ярий (К); з коренем середньої довжини (від 12,1 до 13,9 

см)  –  рижій  посівний  (К),  ріпак  ярий  (КС);  з  довгим  коренем  (від  14  см  і 

більше): гірчиця ефіопська (К), гірчиця ефіопська (КС).  

 
 

Рис. 6. 40. Висота та довжина кореня рослин рижію, гірчиці та ріпаку 
залежно від фази розвитку і застосування кремнієвмісного добрива  

(КС – внесення кремнієвмісних добрив, К – контроль) 
 

Також здійснено розподіл генотипів на три групи за показником висоти 

надземної маси: низькорослі (до 70 см) – рижій посівний (К), рижій посівний 

(КС), ріпак ярий (К); середньорослі (від 71 до 80 см) – ріпак ярий (КС), гірчиця 

ефіопська (К); високорослі (понад 80 см) – гірчиця ефіопська (КС). 

Встановлено, що  у  рослин  котрі  були  вирощені  з  внесенням  кремніє‐

вмісних добрив, за одним виключенням, а саме за показником довжини ко‐
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реня у рижію посівного, який вирощений без внесення добрива, переважає 

рослини з внесенням добрив на 25 %.  Інші рослини за цим показником ма‐

ють меншу різницю (з перевагою в бік рослин вирощених із внесенням доб‐

рив), а саме ріпак ярий – на 4 %, гірчиця ефіопська – на 6,67 %. 

За  показником  висоти  надземної  частини  рослин  різниця  є  більш 

помітною та становить у рижію посівного – на 3,08 %, гірчиці ефіопської – на 

10,79 %, ріпаку ярого – на 11,54 %.  

Дослідження морфометричних показників листків дозволили встанови‐

ти ряд закономірностей і здійснити розподіл генотипів рослин за показником 

довжини листка на наступні групи (рис. 6. 41): з коротким листком (до 7 см) – 

рижій посівний (КС); з середнім листком (від 7,1 до 9 см) – рижій посівний (К), 

гірчиця ефіопська (К), гірчиця ефіопська (КС); з довгим листком (понад 9 см) – 

ріпак ярий (К), ріпак ярий (КС). 

 

Рис. 6. 41. Розмір листкової пластинки та діаметр стебла  рослин рижію, 
гірчиці та ріпаку залежно від фази розвитку і застосування кремнієвмісного 

добрива (КС – внесення кремнієвмісних добрив, К – контроль) 
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За  шириною  листка  рослини  було  розподілено  наступним  чином: 

вузьколисті  (до 4,4 см) – рижій посівний  (КС), рижій посівний  (К);  середньої 

ширини  листка  (від  4,5  до  5,5  см)  –  ріпак  ярий  (К),  ріпак  ярий  (КС); 

широколисті (понад 5,5 см) – гірчиця ефіопська (К), гірчиця ефіопська (КС). 

Аналізуючи  отримані  дані  щодо  показників  розміру  листків  можна 

помітити, що внесення кремнієвмістних добрив позитивно впливає на розмір 

листків у гірчиці ефіопської та ріпаку ярого. У  гірчиці ефіопської ця перевага 

незначна,  за  довжиною  –  на  3,41 %  та  шириною  –  на  1,54 %.  А  от  ріпак 

показує  значну  різницю,  яка  становить  9,8 %  за  показником  довжини  та 

18,18 % за показником ширини. 

На  противагу  цим  рослинам  у  рослин  рижію  посівного  вирощеного  з 

внесенням добрив спостерігається доволі значне зменшення розмірів листків 

(довжини – на 23,08 % та ширини – на 33,33 %). 

За  показником  діаметру  стебла  рослини  розподілено  на  дві  групи:  

тонкостебельні  (до  0,5  мм  включно)  –  рижій  посівний  (КС),  рижій  посівний 

(К),  гірчиця  ефіопська  (К),  ріпак  ярий  (К);  товстостебельні  (понад  0,5  мм)  ‐  

гірчиця ефіопська (КС), ріпак ярий (КС). 

За  цим  показником  зберігається  тенденція  щодо  вище  наведених  

показників,  а  саме  внесення  кремнієвмістних  добрив  стимулює  кращий 

розвиток  гірчиці  ефіопської  та  ріпаку  ярого,  але  погіршує  показники  рижію 

посівного (окрім показника висоти надземної частини рослини). 

Встановлено,  що  внесення  кремнієвмісних  добрив  сприяло 

підвищенню накопиченні сухої речовини у рослин Brassica carinata, у решти 

представників  спостережено  збільшення  вмісту  вуглеводів  (моно‐  та 

загальних цукрів) за цих же умов (рис. 6. 42). Накопичення сухої речовини у 

рослинах  виду  Brassica  carinata  спостерігалося  на  рівні  досліджень, 

проведених  іноземними  дослідниками  (Seepaul  et  al.,  2019).  За  даними 
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досліджень  Coquerel  (2024)  зясовано,  що  в  умовах  України  вміст  сухої 

речовини у рослин Brassica napus такий самий, як в умовах Франції. 

З’ясовано, що  в  умовах  України  вміст  цукрів  у  рослинах  виду Brassica 

carinata відрізняється, і є вищим – порівняно з дослідженнями у Kumar et al. 

(2020). У рослин Camelina sativa ці показники є вищими, ніж у дослідженнях 

Zahoor Ahmad. При тому цей самий показник у наших дослідженнях Brassica 

napus є дуже подібним на результат дослідження цієї рослини вищезгаданим 

автором (Ahmad, et al., 2021). 

 

Рис. 6. 42. Загальний вміст цукрів, моноцукрів та сухої  
речовини залежно від фази розвитку рослин  та варіанту досліду 

(BC – Brassica carinata A. Braun, CS – Camelina sativa (L.) Crantz f. annua,  
cv. Peremoha, BNAR – Brassica napus f. annua D.C., cv. s. Rimal; 

 K – контроль, О – внесення кремнієвмісних добрив) 
 

Виявлено,  що  вміст  органічних  кислот  у  фітомасі  Camelina  sativa  та 

Brassica napus зростав за внесення кремнієвмісних добрив, у Brassica carinata 

навпаки  спостерігали  зменшення  рівня  за  цих  же  умов.  Що  стосується 

накопичення дубильних речовин, то їхній вміст зростав у Brassica carinata та 

Camelina  sativa  –  у  варіантах  із  внесенням  добрив,  і  знижувався  у  Brassica 

napus (рис. 6. 43).  
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Рис. 6. 43. Загальний вміст органічних кислот та дубильних  

речовин залежно від фази розвитку рослин та варіанту досліду 
(BC – Brassica carinata A. Braun, CS – Camelina sativa (L.) Crantz f. annua, cv. 
Peremoha, BNAR – Brassica napus f. annua D.C., cv. s. Rimal; K – контроль, О – 

внесення кремнієвмісних добрив) 
 

Показники  вмісту  дубильних  речовин  та  органічних  кислот  Camelina 

sativa,  отримані  в  результаті  проведених  дослідів,  є  співставними  з 

аналогічними показниками інших дослідників (Juodka, et al., 2022). 

З’ясовано,  що  кремнієвмісні  добрива  також  суттєво  підвищують 

накопичення аскорбінової  кислоти  у Brassica  carinata  та Camelina  sativa,  а  у 

Brassica napus цей показник зменшується (рис. 6. 44). Аналіз наукових праць 

щодо  накопичення  аскорбінової  кислоти  дозволив  виявити,  що  її  вміст  у 

рослин  Brassica  carinata  вищий  у  наших  умовах  порівняно  із  отриманими 

даними (Hailemariam et al., 2020). Цю ж саму закономірність помічено також 

у рослин виду Brassica napus (Ahmad et al., 2021). 
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Рис. 6. 44. Загальний вміст аскорбінової кислоти  

залежно від фази розвитку рослин та варіанту досліду  
 (BC – Brassica carinata A. Braun, CS – Camelina sativa (L.) Crantz f. annua, cv. 

Peremoha, BNAR – Brassica napus f.annua D.C., 
 cv. s. Rimal; K – контроль, О – внесення кремнієвмісних добрив) 

 

З  огляду  на  отримані  вище  наведені  дані  біохімічних  досліджень 

надземної  фітомаси  можна  зробити  висновок,  що  кремнієвмісні  добрива  в 

цілому  позитивно  сприяють  накопиченню  структурно‐функціональних  та 

біологічно  активних  сполук  у  рослин  Brassica  carinata,  Camelina  sativa  та 

Brassica  napus.  Тому  їх  можна  в  майбутньому  використовувати  для 

підвищення продуктивності культурфітоценозів цих представників. 

За  результатами  проведених  досліджень  виявлено  особливості  зміни 

показників  інтенсивності  індукції  флуоресценції  хлорофілу  у  трьох  різних 

видів  рослин  родини  Brassicaceae  (Camelina  sativa  Сrantz  f.  annua,  сорт 

Перемога, Brassica carinata A. Braun (ВФ‐відібрана форма) та Brassica napus f. 

annua DC., сорт Rimal) за використання кремнієвмісних сполук.  

Одним  із  найважливіших  завдань  сучасної  біологічної  науки  (зокрема 

інтродукції,  рослинництва,  біотехнології,  селекції  тощо)  є  збільшення 

асортименту  нових  культур  задля  забезпечення  продовольчої,  біологічної, 

екологічної  та  енергетичної  безпеки  людства.  Вирішення  цього  завдання 
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можна досягти шляхом найбільш повної мобілізації фізіологічних процесів у 

рослин  за  рахунок  об’єктно‐орієнтованої  стратегії  підбору  технологічного 

регламенту їх вирощування (зокрема, добрив, гербіцидів, інсектицидів тощо). 

Сьогодні  доведено,  що  нерозумне  (неконтрольоване)  застосування 

органічних  та  мінеральних  добрив  призводить  до  забруднення  довкілля, 

порушення нормального функціонування агроекосистем, зменшення врожаїв 

сільськогосподарських культур (Craswell, 2021; Ren et al., 2022). Ця проблема 

спонукає  до  пошуку  не  тільки  оптимального  дозування  наявних  на  ринку 

добрив, але й розробки сучасних макро‐, мікро‐ або нанодобрив (Chen et al., 

2021; Astaneh et al., 2021).   

Відомо,  що  мікродобрива  сприяють  оздоровленню  ґрунтів,  а  також 

значно покращують фізіологічні процеси у рослин (Astaneh et al., 2021; Tao et 

al.,  2021).  Разом  із  тим,  відмічено  необхідність  системного  підходу  до 

створення таких речовин, адже кожен рослинний організм (вид, форма, сорт) 

по‐різному  реагує  на  наявність  того  чи  іншого  елементу  в  агрофітоценозах 

(Astiari et al., 2019; Hanhur et al., 2021; Gorash et al., 2021; Xiong et al., 2021). 

Мікродобрива  на  основі  кремнію  сьогодні  активно  використовуються  як 

універсальні  препарати  для  кореневого  та  позакореневого  підживлення 

олійних, зернобобових, злакових, овочевих та плодових культур. Але з огляду 

на  останні  дослідження  виявлено,  що  кремнієвмісні  сполуки  досить 

вибірково впливають на фізіолого‐біохімічний стан і продуктивність рослин, у 

тому числі представників родини капустяні (Brassicaceae). 

Родина  Brassicaceae  є  однією  з  найпоширеніших  груп  рослин, 

представники  якої  здавна  культивуються  та  мають  важливе  економічне  і 

господарське  значення  (Raza  et  al.,  2020;  Jabeen,  2020).  Серед  різноманіття 

відомих  та  широковживаних  культур  цієї  родини  особливої  уваги 

заслуговують Camelina sativa  (L.) Сrantz, Brassica carinata A. Braun та Brassica 

napus  f.  annua  DC.  як  високопродуктивні  олійні,  цінні  харчові,  лікарські, 
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кормові, медоносні культури (Sydor et al., 2022; Seepaul et al., 2021; Blume et 

al., 2021; Raboanatahiry, et al., 2021). Незважаючи на різні центри походження 

(B. carinata – гірські райони Африки, C. sativa – Північна Європа та Південно‐

Східна  Азія,  B.  napus  f.  annua  –  північно‐західні  райони  Європи  та 

Середземномор’я) в культурі ці види поширені майже по всіх континентах  і 

використовуються  людством  багато  тисячоліть  (https://www.gbif.org/uk; 

Salehi  et  al.,  2021).  Вони  є  відмінним  джерелом  поживних  речовин 

(вуглеводів,  ліпідів,  білків,  вітамінів  і  мінералів)  та  біохімічних  речовин, що 

сприяють  зміцненню  здоров’я  (фенолів,  флавоноїдів  і  глюкозинолатів), 

мають  антимікробну,  антизапальну,  протионкологічну  й  антидіабетичну  дію 

(Raza  et  al.,  2020;  Ayadi  et  al.,  2022;  Mandrich  &  Caputo,  2020).  Завдяки 

високому  вмісту  олії  у  насінні  (30–50%)  представники  родини  Brassicaceae 

викликають  значний  інтерес  у  світі  як  джерело  олії  для  створення 

лакофарбових покриттів, біодизелю, а також лікарських препаратів (Mandrich 

&  Caputo,  2020;  Alberghini  et  al.,  2022;  Hagos  et  al.,  2020;  Raj  et  al.,  2022). 

Макуху,  отриману після  віджиму олії,  використовують для  годівлі  тварин  та 

виробництва біологічних добрив (Raj et al., 2022). 

В умовах України рослини C. sativa, B. carinata, та B. napus f. annua вия‐

вили  високу  продуктивність  і  стійкість.  Вони  можуть  бути  перспективними 

олійними культурами за використання відповідних молекулярно‐генетичних 

та біотехнологічних методів для  створення цінних  генотипів  і  сортів  із  зада‐

ними  кількісними  та  якісними  характеристиками олії.  Зважаючи на  високий 

адаптивний і продуктивний потенціал рослин C. sativa, B. carinata, та B. napus 

f.  аnnua,  а  також  враховуючи  потреби  вітчизняного  енергетичного  і  продо‐

вольчого ринку, є необхідність у залученні до всебічних  інтродукційних дос‐

ліджень  в  умовах  України широкого  спектра  генотипів  цих  рослин  для  вве‐

дення їх у промислову культуру та розширення вітчизняної сировинної бази. 
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З  огляду  на  аналіз  вітчизняної  і  світової  літератури,  а  також  зібрану  в 

Національному  ботанічному  саду  імені М.М. Гришка НАН України  унікальну 

за  якісними  та  кількісними  показниками  генотипову  колекцію  рижію 

посівного  (Camelina  sativa),  капусти  (гірчиці)  ефіопської  (Brassica  carinata), 

ріпаку  (Brassica  napus),  сформувалась  важлива  наукова  мета  –  встановити 

закономірності  проходження  фізіолого‐біохімічних  процесів  у  сортів  та 

сортозразків  власної  селекції  на  різних  фазах  розвитку  рослин  за  впливу 

кремнієвмісних добрив. 

Упродовж  вегетаційного  періоду  (фази  бутонізації,  цвітіння,  цвітіння–

початок  плодоношення,  плодоношення,  дозрівання  насіння)  проводили 

відбір  рослинних  зразків  (Camelina  sativa  Сrantz  f.  annua,  сорт  Перемога, 

Brassica carinata A. Braun (ВФ‐відібрана форма) та Brassica napus f. annua DC., 

сорт Rimal) для фізіолого‐біохімічних досліджень.  

Численні  функції  кремнію  в  біології  рослин,  включно  захист  від 

абіотичних  і біотичних стресів, надають рослинним організмам ряд переваг, 

пов’язаних  із  фізіологічними  процесами  формування  їхньої  продуктивності. 

На  жаль,  інформація  щодо  участі  кремнію  в  структурно‐функціональній 

організації  системи  ґрунт–рослина,  його  ролі  в  біології  та  екології 

представників  родини  Brassicaceae  дуже  обмежена.  Тому  особливої 

актуальності  набувають  дослідження,  пов’язані  з  аналізом  фізіолого‐

біохімічних  процесів  у  рослин  Camelina  sativa,  Brassica  carinata  та  Brassica 

napus за впливу кремнієвмісного добрива.  

Аналіз параметрів флуоресценції хлорофілу є потужним інструментом 

вивчення  впливу  найрізноманітніших  екологічних  чинників  на  рослинні 

організми  (Seliutina  et  al.,  2021;  Rohacek  &  Bartak,  1999;  Hrusha,  2015). 

Біотичні  та  абіотичні  чинники  часто  є  інгібіторами  й  активаторами 

біоенергетичних  процесів,  що  протікають  у  клітинах  рослин  та  мають 

виражений  вплив  на  параметри  кінетики  і  спектральні  особливості 
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флуоресценції,  а  також  на  її  стаціонарний  рівень  (Hrusha,  2015;  Maxwell  & 

Johnson,  2000).  Метод  індукції  флуоресценції  хлорофілу  (ІФХ)  дає  змогу 

продемонструвати  адаптаційні  зміни  фотосинтетичного  апарату,  які 

виникають  у  зв’язку  з  підвищенням  рівня  антропогенного  навантаження 

(Maxwell & Johnson, 2000; Mazura et al., 2021). 

Крива індукції флуоресценції хлорофілу відображає фізіологічний стан 

усього  електронтранспортного  ланцюга фотосинтезу  та  кінетику його різних 

частин.  Як  показано  на  рис.  6. 45,  інтенсивність  індукції  флуоресценції 

залежала  від  генотипових  особливостей  та  внесення  кремнієвмісного 

добрива.  

 
Рис. 6. 45. Інтенсивність індукції флуоресценції хлорофілу у рослин родини 
Brassicaceae: А – Camelina sativa Сrantz f. annua, сорт Перемога, В – Brassica 
carinata A. Braun (ВФ‐відібрана форма), С – Brassica napus f. annua DC., сорт 

Rimal залежно від генотипових особливостей та використання 
кремнієвмісного добрива (фаза цвітіння) 

 

Рослини C.  sativa,  сорту  Перемога  і B.  carinata  (ВФ‐відібрана  форма) 

мали вищу ІФХ, що свідчить про високу активність фотосинтетичного апарату 

порівняно  з B.  napus  сорту  Rimal.  У  випадку  наявності  кремнію  зафіксовано 

зростання Fm у C. sativa  сорту Перемога та B. napus  сорту Rimal, що свідчить 

про  позитивний  вплив  кремнієвмісного  добрива  на  формування  та 
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функціонування  хлоропластів.  На  фізіологічний  стан  рослин  B.  carinata 

спостерігався менший вплив кремнієвмісного добрива. 

У  фазі  плодоношення  в  контролі  і  в  подальшому  спостерігали  кращу 

ІФХ у рослин C. sativa сорту Перемога і B. carinata (ВФ‐відібрана форма) – порівняно з 

рослинами B. napus сорту Rimal. Використання кремнієвмісного добрива по‐

зитивно впливало на фізіологічний стан рослин B. napus сорту Rimal (рис. 6. 46).  

 

 
Рис. 6. 46. Інтенсивність індукції флуоресценції хлорофілу у рослин родини 
Brassicaceae: А – Camelina sativa Сrantz f. annua, сорт Перемога, В – Brassica 
carinata A. Braun (ВФ‐відібрана форма), С – Brassica napus f. annua DC., сорт 

Rimal залежно від генотипових особливостей та використання 
кремнієвмісного добрива (фаза плодоношення) 

 
На  даній  фазі  розвитку  рослин  встановлено  вирівнювання  цих 

показників у C. sativa сорту Перемога, що може свідчити про стійку діяльність 

фотосинтетичного  апарату,  а  у  B.  carinata  (ВФ‐відібрана  форма) 

спостерігалося зростання ІФХ за використання кремнію. 

Таким чином, дослідження інтенсивності індукції флуоресценції хлоро‐

філу  у  рослин  трьох  культур  родини  Brassicaceae  (Camelina  sativa  Сrantz  f. 

annua, сорт Перемога, Brassica carinata A. Braun (ВФ‐відібрана форма) та Bras‐

sica napus f. annua DC., сорт Rimal) виявили, що використання кремнієвмісних 

добрив по‐різному впливає на проходження фізіолого‐біохімічних процесів в 
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організмі.  Найбільш  сприятливий  вплив  кремнію  простежувався  у  Brassica 

napus  f.  annua  DC.  сорту  Rimal,  для  решти  культур  використання  цього 

добрива  спричиняло  чутливість  до  стресових  чинників  довкілля,  що 

відображалося в різкій відмінності накопичення окремих біологічно активних 

сполук  у  надземній  масі  упродовж  вегетаційного  періоду  (Рахметов  та  ін., 

2024).  

Аналіз  кривих  індукції  флуоресценції  хлорофілу  з’ясував,  що  рослини 

C. sativa  сорту Перемога, B.  carinata  (ВФ‐відібрана форма) характеризуються 

кращою роботою фотосинтетичного апарату порівняно з B. napus сорту Rimal. 

Показано  значний  позитивний  вплив  кремнію  на  фізіологічний  стан  рослин 

B. napus сорту Rimal. Дещо менший ефект кремнієвмісного добрива зафіксо‐

вано для рослин C. sativa сорту Перемога і B. carinata (ВФ‐відібрана форма). 

За  результатами  проведених  досліджень  виявлено  особливості  зміни 

показників  інтенсивності  індукції  флуоресценції  хлорофілу  в  трьох  різних 

видів  рослин  родини  Brassicaceae  (Camelina  sativa  Сrantz  f.  annua,  сорт 

Перемога, Brassica carinata A. Braun (ВФ‐відібрана форма) та Brassica napus f. 

annua DC., сорт Rimal) за використання кремнієвмісних сполук. Встановлено, 

що  найбільш  сприятливий  вплив  кремнієвмісних  сполук  простежувався  у 

Brassica  napus  f.  annua DC.  сорту  Rimal,  для  решти  видів  використання  цих 

сполук спричиняло чутливість до стресових чинників довкілля, що виявлялося 

у  різкій  відмінності  накопичення  окремих  біологічно  активних  сполук  у 

надземній  масі  впродовж  вегетаційного  періоду.  У  всіх  досліджуваних 

зразків  у  цілому  відмічено  покращення  роботи  фотосинтетичного  апарату, 

разом із максимальним проявом для рослин B. napus f. annua DC. сорту Rimal 

за використання мікродобрив. 
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РОЗДІЛ 7.  
 

НАУКОВО‐МЕТОДИЧНІ ЗАСАДИ ПОЛІПШЕННЯ  
БІОТРОФНИХ ВЛАСТИВОСТЕЙ ГРУНТУ ТА БЕЗВІДХОДНОЇ 

УТИЛІЗАЦІЇ ПОБІЧНОЇ ПРОДУКЦІЇ 
 
 
 

Зміна кліматичних умов і зростання чисельності населення становлять 

велику  загрозу  для  продуктивності  сільськогосподарських  культур  у  всьому 

світі.  Ризосферна  зона  рослин  містить  корисні  мікроорганізми,  які  допома‐

гають рослинам протистояти стресовим умовам та імпровізувати поглинання 

поживних речовин. Відомо, що взаємодія рослин  і мікробів покращує  агро‐

фізичний  стан  ґрунту,  підвищує  його  родючість,  водоутримуючу  спромож‐

ність і поглинання поживних речовин рослинами (Puranik et al., 2023).  

Біотрофія  стосується  тісних,  часто  мутуалістичних  відносин  між 

рослиною  та  мікроорганізмом,  при  яких  мікроорганізм  отримує  поживні 

речовини  від  рослини‐господаря.  У  свою  чергу,  мікроорганізм  забезпечує 

рослину  необхідними  поживними  речовинами,  мінералами  або  водою. 

Взаємодії рослин і мікроорганізмів можуть набувати різних форм, але деякі з 

найбільш відомих прикладів включають мікоризний симбіоз, фіксацію азоту 

та  фіторемедіацію.  Кожен  тип  взаємодії  приносить  унікальні  переваги  як 

рослині,  так  і  мікроорганізму.  Наприклад,  мікоризний  симбіоз  допомагає 

рослинам  засвоювати  необхідні  поживні  речовини,  такі  як фосфор,  а  також 

забезпечує гриби джерелом вуглеводів. Азотфіксуючі бактерії, з іншого боку, 

стимулюють  ріст  рослин,  забезпечують  їх  азотними  сполуками. 

Фіторемедіація  –  це  взаємодія  рослин  та  мікроорганізмів,  що  включає 

використання рослин для видалення забруднювачів  із  ґрунту або води. Цей 

тип  взаємодії  рослин  і  мікроорганізмів  корисний,  оскільки  допомагає 

очищувати  забруднене  середовище  без  використання  шкідливих  хімікатів. 
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Існує  безліч  інших  типів  взаємодії  рослин  та мікроорганізмів,  кожен  із  яких 

має свої унікальні переваги. 

Взаємодія  рослин  та  мікроорганізмів  необхідна  для  стимуляції 

розвитку  як  рослин,  так  і  мікроорганізмів.  Мікроорганізми  забезпечують 

рослини  необхідними  поживними  речовинами,  а  рослини  є  джерелом 

існування для мікроорганізмів. В останні роки зростає інтерес до біотрофних 

досліджень,  які  дозволяють  потенційно  підвищити  врожайність 

сільськогосподарських культур у всьому світі. Дослідники досягають прогресу 

в  розумінні  того,  яким  чином можна  використовувати  взаємодію  рослин  та 

мікроорганізмів для покращення  їхнього росту  і продуктивності. Наприклад, 

маніпулюючи  мікроорганізмами  сільськогосподарських  культур,  фермери 

потенційно  спроможні  підвищити  врожайність  і  скоротити  втрати  врожаю 

через шкідників  та  хвороби. Одночасно  науковці  працюють  над  розробкою 

інокулянтів  на  основі  мікроорганізмів,  які  можна  використовувати  для 

покращення живлення рослин і підвищення їх стійкості до посухи.  

Заселення  суші  рослинами  близько  400  мільйонів  років  тому  було 

пов’язане  з  колонізацією  їх  примітивних  коренів  ґрунтовими  нитчастими 

грибами  (Nicolson,  1975;  Simon  et  al.,  1993;  Taylor  et  al.,  1995).  Сьогодні  від 

90%  до  95%  наземних  рослин  все  ще  зберігають  певний  тип  мікоризної 

асоціації,  так  що  мікориза,  а  не  коріння,  є  головним  органом  поглинання 

поживних  речовин  наземними  рослинами  (Smith  and  Read,  2000).  Деякі 

біотрофи  надають  переваги  своїм  господарям  і  вважаються  мутуалістами. 

Мікоризні гриби підтримують наземні екосистеми за допомогою мутуалізму 

з  корінням,  до  них  відносяться  ектомікоризи,  переважно  на  деревах, 

арбускулярні  мікоризи  на  більшості  рослин  і  ерикаційні  мікоризи  на 

рослинах, що ростуть на бідних поживними речовинами ґрунтах.  

З  мікоризних  симбіонтів  найпоширенішою  є  арбускулярна  мікориза. 

Арбускулярні  мікоризні  гриби  –  багатофункціональні  симбіонти,  екологічно 
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важливі для більш ніж 80% наземних рослин, які формують кореневі асоціації 

з цими грибами (Kim et al., 2022). Арбускулярна мікориза взаємодіє з різно‐

манітними  рослинами‐господарями  (разом  із  покритонасінними,  голонасін‐

ними,  крилоподібними,  а  також  деякими  мохами,  плауноподібними  та 

псилотовими) і порівняно невеликою групою асептичних нитчастих грибів по‐

рядку Glomales (Bago et al., 2000). Як рослина, так і гриб отримують поживну 

користь  в  арбускулярному  мікоризному  симбіозі:  рослина‐господар  покра‐

щує поглинання мінералів, а гриб отримує фіксований вуглець. У цьому обмі‐

ні  поглинання,  метаболізм  і  транслокація  вуглецю  мікоризою  вивчені  не‐

достатньо. Таким чином, дослідження арбускулярних мікоризних грибів має 

принципове і практичне значення. По‐перше тому, що в більшості середовищ 

«коренева  біологія»  насправді  є  «біологією  мікоризи»,  а  по‐друге,  через 

практичну важливість арбускулярної мікоризи у таких різноманітних сферах, 

як стале сільське господарство, садівництво, лісовідновлення та екосистемне 

управління (Bethlenfalvay and Schuepp, 1994; Barea and Jeffries, 1995). 

Облігатна біотрофна природа арбускулярних мікоризних грибів давно 

визнана  (Azcon‐Aguilar  et  al.,  1999),  хоча  її  абсолютна  поява  у  природних 

умовах  ніколи  не  була  доведена.  Сапрофітну  здатність  арбускулярних 

мікоризних  грибів  оцінювали  на  підставі  спостережень  за  тривалим 

незалежним ростом цих  грибів  in vitro  (Hepper, 1983; Mosse, 1988; Strullu et 

al.,  1997;  Azcon‐Aguilar  et  al.,  1999),  але  всі  спроби  культивування  цих 

організмів у асептичних умовах були невдалими. Важливим питанням як на 

фундаментальний,  так  і  прикладний  погляд,  є  з'ясування  причин  того,  що 

робить  арбускулярні  мікоризні  гриби  облігатними  ендосимбіонтами.  З 

одного  боку,  оскільки  симбіоз  арбускулярної  мікорізи  є  спадковою 

асоціацією  рослина‐гриб  (Simon  et  al.,  1993),  з’ясування  клітинних  і 

молекулярних механізмів,  які  лежать  в  основі  облігатної  біотрофії  грибного 

партнера, передбачає розуміння  інших біотрофних відносин між рослинами 
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та мікроорганізмами. З іншого боку, це пояснення є необхідною умовою для 

кращого  використання  арбускулярної  мікоризи.  Зокрема,  залежно  від 

обставин,  мікотрофну  роль  рослини  доречно  мінімізувати  для  підвищення 

продуктивності  рослин,  або,  навпаки,  штучно  інтенсифікувати  розвиток 

грибів  та  синтез  інокулята.  Можна  припустити,  що  розуміння  облігатної 

біотрофності  арбускулярних  мікоризних  грибів  дозволить  вирощувати  ці 

організми у чистій культурі. 

С.  Неррer  (1987)  звернув  увагу  на  три  аспекти,  розглядаючи  питання 

щодо біотрофності арбускулярних мікоризних грибів: 1) харчування, оскільки 

ріст  гриба  може  залежати  від  певних  поживних  речовин,  що  постачаються 

господарем,  2)  фізичні  аспекти,  оскільки  деякі  умови  росту  in  vivo  можуть 

бути  необхідними  для  росту  in  vitro  і  3)  генетика,  оскільки  гриб  може 

втратити  частину  свого  генетичного  потенціалу.  Останні  дані,  отримані  на 

більш  ретельному  вивченні  росту  грибів  під  час  пресимбіотичної  стадії,  а 

також  C‐метаболізму  гриба  під  час  стадій  ізольованого  існування  в  умовах 

симбіозу, надали непрямі докази того, що гриб повинен тісно взаємодіяти зі 

своїм  господарем  для  того,  щоб  повністю  проявити  свій  генетичний 

потенціал. Наприклад,  екстрарадикальний міцелій Glomus  intraradices  Smith 

&  Schenck  утворює  розгалужені  поглинаючі  структури  одразу  після 

проникнення  гриба  у  корінь  господаря  Lycopersicum  esculentum  Mill.  для 

симбіотичної  взаємодії  (Bago  et  al.,  1998).  Коли  життя  рослини‐господаря 

закінчується, кінцева консервативна форма гриба – у вигляді спор – чекає на 

створення  симбіотичної  асоціації  з  новим  господарем.  Спори  у  більшості 

арбускулярних  мікоризних  грибів  у  стані  спокою  можуть  спонтанно 

проростати у воді та за відсутності кореня‐господаря (асимбіотичний ріст) за 

відповідних абіотичних умов. Іноді проростання можна значно покращити за 

допомогою  атмосфери,  збагаченої  CO2,  або  попередньої  інкубаційної 

обробки  при  низькій  температурі.  Багато  арбускулярних  мікоризних  грибів 
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також  продукують  внутрішньорадикальні  везикули,  які  можуть  служити 

структурами  збереження  та  розмноження,  але  фізіологія  цих  везикул,  на 

жаль, не досліджена (Bago and Bécard, 1998). 

S.  Smith  і  D.  Read  (2010)  після  аналізу  ізотопно  мічених  субстратів  у 

арбускулярній  мікоризі Daucus  carota,  колонізованої G.  intraradices,  дійшли 

висновку, що: 1) мічені C13  глюкоза  та фруктоза  (але не маніт або сукцинат) 

ефективно  поглинаються  грибом  у  корені  та метаболізуються  з  утворенням 

мічених  вуглеводів  і  ліпідів,  2)  екстрарадикальний міцелій  не  використовує 

екзогенні  цукри  для  катаболізму,  зберігання  або  передачі  до  господаря,  3) 

гриб  перетворює  цукри,  що  поглинаються  коренем,  на  ліпіди,  які  потім 

переміщуються  до  екстрарадикального  міцелію,  4)  гексоза  у  гриба  значно 

активніша  через  окислювальний  пентозофосфатний  шлях,  ніж  гексоза 

рослини‐господаря. 

Біотрофні гриби, взаємодіючи з рослинами, встановлюють довгостро‐

кові відносини зі своїми господарями для життєдіяльності. На відміну від нек‐

ротрофів,  їм  доводиться  боротися  із  захисними  механізмами  рослини,  аби 

розвиватися  всередині  господаря  та  харчуватися  живими  клітинами. 

Вважається,  що  мікробні  патогени  продукують  і  транспортують  міріади 

ефекторних  білків  для  захоплення  клітинної  програми  своїх  господарів 

(Kloppholz et al.,1999). Дані, отримані G. Smith та іншими, свідчать про те, що 

здатність  до  факультативних  біотрофних  відносин  у  вільноживучих 

сапротрофних  базидіоміцетів  може  бути  більшою,  ніж  передбачалося 

раніше.  Ці  особливості  свідчать  про  активний  функціональний  симбіоз  між 

грибом і рослиною (Smith et al., 2017). 

Щоб  використовувати  рослини  як  живі  субстрати,  біотрофні  гриби 

розвинули специфічні варіації своїх трубчастих клітин – гіфи. Вони утворюють 

інфекційні  структури,  такі  як  аппресорії,  гіфи  проникнення  та  гіфи  інфекції, 

для  вторгнення  у  рослину  з  мінімальним  пошкодженням  клітин  господаря. 



197 

Для  встановлення  сумісності  з  господарем  необхідна  контрольована 

секреторна  активність  та  чіткі  рівні  інтерфейсу.  Наприклад,  види  Colletotri‐

chum  переходять  від  початкового  біотрофного  до  некротрофного  росту,  а 

облігатні біотрофні іржаві гриби можуть утворювати найбільш спеціалізовану 

гіфу – гаусторій. Експресія генів та імуноцитологічні дослідження з іржавими 

грибами підтверджують ідею про те, що гаусторій є апаратом для тривалого 

поглинання поживних речовин господаря (Bécard et al., 1990). 

Рослини та гриби мають багаторічну конкуренцію за ресурси та якість 

життя.  У результаті  різноманітні  патосистеми розвинули численні  стратегії  в 

поєднанні  з  появою  мультиваріантного  патогенного  і  сапрофітного  способу 

життя.  M.  Kabbage  та  інші  при  дослідженні  фізіологічних  реакцій  для 

переходу від біотрофії до некротрофії у симбіотрофів, роблять висновок, що 

як  контроль  імунних  реакцій  рослин,  так  і  потреба  у  більш  ефективному 

способі  засвоєння поживних речовин  є можливими  тригерами переходу до 

некротрофії (Kabbage et al., 2015).  

Відомо,  що  фенольні  сполуки  –  це  індуктори  генів  вірулентності  у 

взаємодіях  між  рослинами  та  патогенами,  наприклад,  за  участю Agrobacte‐

rium,  а  флавоноїди,  як  відомо,  є  індукторами  або  інгібіторами  генів  Nod  у 

симбіозі Rhizobium  та  бобових.  Останні  дослідження  показують,  що  деякі  з 

цих  сполук  слугують  молекулярними  сигналами  у  розвитку  везикулярно‐

арбускулярної мікоризи. Вважається, що сполуки всередині кореня та вивіль‐

нені  коренем,  такі  як  флавоноїди,  відіграють  певну  роль  у  цій  комунікації 

рослин  і  грибів,  як  це  вже  було  продемонстровано  в  інших  симбіотичних 

асоціаціях (наприклад, Rhizobium‐Leguminoseae) (Vierheilig et al., 1998). Також 

існують свідчення, що на ріст гіф везикулярно‐арбускулярної мікоризи гриба 

Gigaspora margarita  Becker & Hall,  впливають  як  стимулюючі,  так  і  інгібуючі 

флавоноїди  разом  на  тлі  оптимального  рівня  CO2.  Усі  стимулюючі  сполуки 

були  флавонолами  (кемпферол,  кверцетин  і  морін)  і  мали  принаймні  одну 
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гідроксильну  групу  в  кільці  B.  Навпаки,  два  ізофлавони  (біоханін  А  та 

геністеїн), один флаванон (гесперетин) і дві сполуки без будь‐якої гідроксиль‐

ної групи в кільці В, галангін (флавонол) і хризин (флавон), були інгібіторами 

розвитку гіф (Chabot et al.,1992). 

Крім  того,  останнім  часом  з'являється  все  більше  доказів  того,  що 

кореневі ендофітні асоціації, які через свою непомітну природу доволі часто 

ігноруються,  можуть  мати  мутуалістичний  характер  і  відігравати  важливу 

роль у природному та штучному середовищі. Нещодавні дослідження біології 

та геноміки кореневих асоціацій виявили захоплююче розуміння фенотипової 

і трофічної пластичності цих грибів та підкреслили геномні ознаки, пов'язані з 

біотрофією і сапротрофією (Zuccaro et al., 2014). Особливе значення на даний 

час  мають  дослідження  ендофітів  трав,  що  передаються  вертикально, 

захищають  своїх  господарів  від  комах  і  травоїдних  тварин,  харчуються  за 

допомогою токсичних вторинних метаболітів (Watkinson, 2016). 

Майбутнє  вивчення  біотрофних  взаємодій  дуже  перспективне, 

оскільки  результати  цієї  роботи  безпосередньо  вплинуть  на  сільське 

господарство.  Завдяки  подальшим  дослідженням  передбачається  розробка 

більш  ефективних  та  стійких  методів  ведення  сільського  господарства,  які 

покращать урожайність і зменшать потребу у хімічних речовинах. Це принесе 

користь як сільському господарству,  так  і навколишньому середовищу. Крім 

того,  біотрофні  дослідження  можуть  також  призвести  до  розробки  нових 

продуктів,  таких як добрива та пестициди, які будуть більш ефективними та 

екологічно  чистими.  Майбутнє  дослідження  біотрофних  взаємодій  є 

багатообіцяючим  і  є  ключем  до  поліпшення  здоров'я  рослин  і  людей. 

Зрештою, біотрофічні дослідження можуть здійснити революцію у сільському 

господарстві та допомогти прогодувати зростаюче населення світу. 
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Матеріали  і  методи.  Зразки  ґрунту  відбирали  у  ювенільній  фазі, 

бутонізації‐цвітіння  та  плодоношення  рослин  рижію,  гірчиці  та  ріпаку. 

Контролем слугував ґрунт за межами дослідних ділянок. 

Алелопатичний  аналіз  ґрунту  здійснювали методом  прямого  біотесту‐

вання  з  використанням  проростків  крес‐салату  (Lepidium  sativum  L.)  та 

амаранту (Amaranthus paniculatus L.) як тест‐об’єктів (Сучасні методи …, 2021). 

Алелопатичну активність  гідрофільних сполук  ґрунту вивчали методом 

біологічних  проб  за  допомогою  проростків  огірка  (Cucumis  sativus  L.)  як 

рослини‐акцептора  (Сучасні методи…,  2021). Цитостатичну дію  гідрофільних 

сполук  ґрунту  досліджували  шляхом  підрахунку  кількості  бічних  коренів 

проростків C. sativus (Сучасні методи…, 2021). 

Фенольні  речовини  виділяли  з  ґрунту  методом  іонного  обміну 

(десорбції),  використовуючи  іонообмінник  КУ‐2‐8  (Н+)  як  модель  кореневої 

системи  з  розчинюючою  і  поглинальною  здатністю  стосовно  рухливих 

органічних сполук (Сучасні методи …, 2021).  

Окисно‐відновний  потенціал  (ОВП,  редокс‐потенціал)  визначали 

потенціометричним методом у суспензії, яка моделює ґрунтовий розчин при 

співвідношенні ґрунту до дистильованої води 1:1 (Fiedler et al., 2007; Labuda, 

Vetchinnikov, 2011).  

Вміст  біогенних  елементів  у  рослинних  тканинах  і  ґрунті  аналізували 

за  методикою  Г.Я.  Рінькіса  і  В.Ф.  Ноллендорфа  на  оптичному  емісійному 

спектрометрі  з  індуковано  зв’язаною  плазмою  ICAP  6300  DUO  (Сучасні 

методи…, 2021).  

Мікробіологічні  дослідження  здійснювали  методом  посіву  ґрунтових 

суспензій  у  відповідних  розведеннях  на  селективні  агаризовані  живильні 

середовища  згідно  із  загальноприйнятими  у  мікробіології  методиками  (Су‐

часні методи…,  2021;  Радченко  та  ін.,  2011;  Андреюк  та  ін.,  2001). Мікромі‐

цети  враховували  на  середовищі  Чапека,  актиноміцети  –  на  крохмаль‐
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аміачному  агарі  (КАА),  амоніфікатори  –  на  м’ясо‐пептонному  агарі  (МПА), 

мікроорганізми,  що  споживають  переважно  мінеральні  сполуки  азоту  –  на 

КАА.  

Вміст  фотосинтетичних  пігментів  (хлорофілів  і  каротиноїдів)  в  листках 

рослин  визначали  спектрофотометрично  на  приладі  Specord  2000  (Analitic 

Jena,  2003  р.).  Виміри  проводили  при  довжинах  хвиль  644 нм  (хлорофіл а), 

662 нм (хлорофіл b) і 440 нм (каротиноїди) згідно (Wellburn, 1994). Екстракцію 

пігментів  здійснювали  DMCO  (диметилсульфоксид)  протягом  4  годин  у 

термостаті за температури 70°C згідно методики (Hiscox & Israelstam, 1979). 

Флавоноїди  екстрагували  70%‐ним  етанолом  зі  свіжозібраних  листків 

упродовж  доби  в  холодильнику.  Кількісний  вміст  флавоноїдів  визначали 

спектрофотометрично  на  приладі  Specord  2000  (Analitic  Jena,  2003  р.)  за 

довжини хвилі 410 нм застосовуючи якісну реакцію з 2%‐ним розчином AlCl3 

у  98%‐ному  етанолі  (Сучасні  методи …,  2021).  Антоціани  екстрагували  96%‐

ним  етиловим  спиртом  з  1%‐ним  вмістом  хлористо‐водневої  кислоти. 

Кількісний  вміст  визначали  спектрофотометрично  на  приладі  Specord  2000 

(Analitic  Jena,  2003  р.)  за  довжини  хвилі  546  нм  (Сучасні  методи  …,  2021). 

Таніни  екстрагували  киплячою  дистильованою  водою  з  наступним 

настоюванням на водяній бані протягом години. Кількісний вміст визначали 

шляхом  титрування  0,1%  розчином  перманганату  калію  суміші 

відфільтрованого екстракту з індигокарміном (Мардар та ін., 2008). 

Для  аналізу  ендогенних  брасиностероїдів  проводили  екстракцію  з 

рослинних зразків в два етапи: перший етилацетат (3 рази по 5 мл) з водної 

витяжки тканин  (1  г  тканини + 5 мл екстракції розчину). Фракцію з етилаце‐

татом  упарювали  у  вакуумі  і  екстрагували  залишок  циклогексаном  (5мл). 

Другий  етап  екстракції  проводили  сумішшю  етанол:вода  (4:1).  Екстракт 

етанолу  упарювали  у  вакуумі,  залишок  розчиняли  в  невеликій  кількості 
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етилацетату. Виміри вмісту брасинолідів проводили на спектрофотометрі при 

довжині хвилі 450 нм (Kravets et al., 2011). 

Науково‐методичні  засади  поліпшення  біотрофних  властивостей 

грунту.  Внесення  кремнієвмісного  добрива  позитивно  позначилось  на 

показниках  активності  лакази  та  кількісних  показниках  лабільних  форм 

Гумусу (табл. 7.1). 

Таблиця 7.1 

Вміст лабільних форм Гумусу та активності  
лакази ґрунту за внесення кремнієвмісного добрива 

 
Культура  Варіант 

досліду 
Лабільні форми 

Гумусу,% 
Активність 

лакази, mƲ/г 
ґрунту 

Ювенільна фаза розвитку 
Рижій  КС 5,27 107,58
  К  5,08  96,45 
Гірчиця  КС  5,11  108,56 
  К  4,83  101,38 
Ріпак  КС  5,34  113,78 
  К  4,61  104,32 

Фаза бутонізації‐цвітіння
Рижій  КС  5,01  101,50 
  К  4,72  85,88 
Гірчиця  КС  4,85  103,41 
  К  4,51  93,24 
Ріпак  КС  5,07  107,25 
  К 4,81 75,79

Фаза плодоношення 
Рижій  КС  4,58  95,76 
  К 4,06 79,34
Гірчиця  КС  4,63  98,57 
  К  4,15  86,55 
Ріпак  КС  4,84  100,23 
  К  4,27  88,31 

Примітка: КС – кремнієвмісне добриво, 
                  К – контроль 
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Необхідно  зауважити,  що  найвищий  рівень  Гумусу  зафіксовано  у 

варіантах з кремнієвмісним добривом за вирощування ріпаку, що пов’язано, 

на  нашу думку,  з  найвищою активністю лакази  та  депонуванням Карбону  в 

результаті  азотфіксації.  Крім  того,  контрольна  ділянка  ґрунту,  на  якій  були 

відсутні  дослідні  рослини,  відрізнялась  дуже  низькими  показниками, 

зокрема:  вміст  лабільних  форм  Гумусу  впродовж  вегетації  рослин  був  у 

межах  2,1‐3,1%, а активність лакази відповідно – 85,67 – 92,34 mƲ/г ґрунту.  

Максимальний  вміст  органічної  речовини  простежувався  на  початку 

вегетаційного  періоду  рослин.  Ці  результати  узгоджуються  з  даними, 

отриманими при визначенні лакази. У подальшому спостерігається поступове 

зменшення  кількісних  параметрів  лабільних  форм  Гумусу  за  рахунок 

утворення стабільних форм, про що свідчить зниження як активності лакази, 

так  і  концентрації  НСО3.  Зростання  рівня  НСО3  у  фазі  бутонізації  –  цвітіння 

пояснюється  підвищенням  температури  повітря  та  активізацією  розвитку 

ґрунтових мікроорганізмів, особливо мікроміцетів, задіяних в синтезі лакази і 

деструкції лігніну (табл. 7.2). 

Таблиця 7.2 
Вплив кремнієвмісного добрива на показники  

електропровідності та концентрації НСО3 

Культура  Варіант досліду НСО3,
мг‐екв/л Н2О 

Електропровідність 
µS/см 

1  2  3 4 
Ювенільна фаза розвитку

Рижій  КС  0,27 456 
  К  0,32 184 
Гірчиця  КС  0,24 179 
  К  0,31 146 
Ріпак  КС  0,16 172 
  К  0,25 138 

Фаза бутонізації‐цвітіння
Рижій  КС  1,15 185 
  К  1,36 140 
Гірчиця  КС  0,26 164 
  К  0,38 118 
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Продовження табл. 7.2 

1  2  3 4 
Ріпак  КС  0,21 132 
  К  0,33 105 

Фаза плодоношення
Рижій  КС  0,22 200 
  К  0,28 141 
Гірчиця  КС  0,40 312 
  К  0,56 183 
Ріпак  КС  0,21 147 
  К  0,25 118 

Оцінка  чисельності  таксономічних  і  функціональних  груп 

мікроорганізмів прикореневого ґрунту досліджуваних видів рослин, а також 

спрямованість  процесів  мінералізації/іммобілізації  органічної  речовини 

засвідчила  зростання  кількісних  параметрів  мікроміцетів  за  внесення 

кремнієвмісного добрива (рис. 7. 1). 

 

Рис. 7. 1. Чисельність мікроміцетів у ґрунті під  
культурами за внесення кремнієвмісного добрива:  

1 – рижій + кремній; 2 – рижій, контроль; 3 – гірчиця + кремній; 4 – гірчиця, 
контроль;  5 – ріпак + кремній; 6 – ріпак, контроль; 7 – контроль ґрунту 

 
Різниця  порівняно  з  контролем  складала  21,7 %,  12,8 %  та  43,6 %  під 

рижієм, гірчицею та ріпаком відповідно. 

У  фазі  бутонізації‐цвітіння  зафіксовано,  навпаки,  зменшення 

чисельності мікроміцетів у дослідних варіантах, зокрема різниця складала від 
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20,4  до  30%.  Кількісні  показники  мікроміцетів  у  фазі  плодоношення 

переважали  у  дослідних  зразках  із  додаванням  кремнію,  особливо  для 

рижію та гірчиці, і становили 66,7 % та 77,2 % відповідно.  

Мікроорганізми  групи  актиноміцетів  найкраще  розвивались  у  ґрунті 

упродовж  усього  періоду  вегетації  культур  із  додаванням  кремнієвмісного 

добрива (рис. 7. 2). 

 

Рис. 7. 2. Чисельність актиноміцетів у прикореневому  
ґрунті за внесення кремнієвмісного добрива:  

1 – рижій+кремній, 2 – рижій, контроль, 3 – гірчиця+кремній, 4– гірчиця, 
контроль, 5 – ріпак+кремній, 6 – ріпак, контроль, 7 – контроль ґрунту 

 
Їхню  найбільшу  чисельність  виявлено  у  ґрунті  дослідних  варіантів 

рижію і ріпаку на початку вегетації та у фазі цвітіння у зразках гірчиці й ріпаку. 

Необхідно  зауважити,  що  різниця  в  чисельності  між  дослідними  та 

контрольними варіантами для гірчиці зростала впродовж вегетації на 14,2 – 

63,6 – 166,6 % відповідно. 

Амоніфікатори здійснюють деструкцію органічних сполук, які надходять 

у  ґрунт  з  кореневими  виділеннями  або  рослинними  рештками.  Чисельність 

мікроорганізмів  цієї  групи  у  дослідних  зразках  перевищувала  контрольні 

варіанти  (рис. 7. 3).  На  початку  вегетації  збільшення  чисельності 

амоніфікаторів встановлено у ґрунтових зразках з‐під рижію, гірчиці та ріпаку 
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на 58,5‐63,0‐64,4 % відповідно.  Гетеротрофні мікроорганізми переважають у 

дослідних ґрунтових зразках гірчиці на 64,4‐50,0‐37,1 % упродовж вегетації.  

Мікроорганізми, які споживають мінеральний азот, також відрізнялись 

кращим розвитком у ґрунті всіх дослідних культур у ювенільній фазі та у фазі 

плодоношення (рис. 7. 4).  

 

Рис. 7. 3. Чисельність амоніфікаторів у прикореневому  
ґрунті за внесення кремнієвмісного добрива:  

1 – рижій+кремній, 2 – рижій, контроль, 3 – гірчиця+кремній,4– гірчиця, 
контроль, 5 – ріпак+кремній, 6 – ріпак, контроль, 7 – контроль ґрунту 

 

 

Рис. 7. 4. Чисельність мікроорганізмів, що споживають мінеральний азот у 
прикореневому ґрунті за внесення кремнієвмісного добрива:  

1 – рижій+кремній, 2 – рижій, контроль, 3 – гірчиця+кремній,4– гірчиця, 
контроль, 5 – ріпак+кремній, 6 – ріпак, контроль,7 – контроль ґрунту 
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У фазі бутонізації‐цвітіння найвищий відсоток  їхньої чисельності  зафік‐

совано для зразків ґрунту під гірчицею, тоді як у зразках рижію та ріпаку чи‐

сельність мікроорганізмів, іммобілізаторів мінерального азоту, зменшувалась. 

У контрольному варіанті ґрунту, що не зазнав впливу дослідних рослин, 

виявилось  менша  чисельність  усіх  досліджуваних  груп  мікроорганізмів 

упродовж вегетації.  

Співвідношення  окремих  показників  чисельності  трофічних  груп 

мікроорганізмів  дозволяє  визначити  спрямованість  мікробіологічних 

процесів  мінералізації‐іммобілізації  органічної  речовини  ґрунту.  Значення 

коефіцієнтів  мінералізації  у  дослідних  зразках  усіх  експериментальних 

культур  упродовж  вегетації  виявились меншими  за  контрольні, що  свідчить 

про  переважання  процесів  накопичення  органічної  речовини  (табл.  7. 3). 

Процеси  мінералізації  найактивніше  відбувались  у  зразках  ґрунту  рижію 

(ювенільна фаза та фаза плодоношення) та ріпаку (фаза бутонізації‐цвітіння) 

без внесення кремнію.  

Таблиця 7. 3 
Спрямованість мікробіологічних процесів  

мінералізації/ іммобілізації органічної речовини ґрунту 
 

Варіант досліду  Коефіцієнт мінералізації‐іммобілізації 
ювенільна 

фаза 
бутонізація‐
цвітіння 

плодоношення

Рижій + кремній  0,9 0,69 1,2 
Рижій, контроль  1,3  1,0  1,6 
Гірчиця + кремній  0,5  0,8  1,2 
Гірчиця, контроль  0,8  1,2  1,3 
Ріпак + кремній  0,9  1,2  0,8 
Ріпак, контроль  1,2  1,5  0,8 
Контроль ґрунту  0,9  1,5  0,9 
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Накопичення  органічних  речовин  переважало  у  дослідних  варіантах, 

найбільше  –  під  гірчицею  та  рижієм,  що  свідчить  про  позитивний  вплив 

внесення кремнієвмісного добрива. 

Отже,  мікробіологічний  моніторинг  ґрунту  дослідних  культур  за 

присутності  сполук  кремнію  засвідчує  збагачення  чисельності  мікроорга‐

нізмів  у  більшості  дослідних  варіантів.  Виключенням  стала  чисельність 

мікроміцетів у фазі бутонізації‐цвітіння, а також аммоніфікаторів у ґрунті під 

рижієм  та  ріпаком.  Процеси  перетворення  органічної  речовини  у  зразках 

ґрунту  за  внесення  кремнію  переважно  були  спрямовані  на  її  накопичення 

порівняно з контрольними варіантами. 

Методом прямого  біотестування  ґрунту  по  відношенню до  проростків 

крес‐салату  показано  наявність  органічних  сполук  з  алелопатичними 

властивостями  під  усіма  досліджуваними  культурами,  причому  додавання 

кремнію  сприяло  зниженню  їхньої  фітотоксичності  на  6‐25 %  залежно  від 

фази вегетації.  

Алелопатична  активність  ґрунту  як  із  додаванням  кремнію,  так  і  без 

нього  підвищувалася  упродовж  вегетації,  що  очевидно  є  наслідком 

акумуляції  рослинних  екзометаболітів.  Проте  алелопатична  напруженість 

ґрунту  була  нижчою  за  внесення  кремнієвмісного  добрива.  Максимальне 

послаблення алелопатичної активності при внесенні кремнію спостерігалося 

в  кінці  вегетації  під  рослинами рижію  та  ріпаку,  на  20 %  та  25 %  відповідно 

(рис.  7.5).  У  той  же  час,  у  ювенільній  фазі  розбіжності  у  алелопатичних 

властивостях ґрунту з додаванням кремнію та за відсутності останнього були 

мінімальними. 

На  відміну  від  крес‐салату  для  амаранту  як  рослини‐акцептора  була 

притаманна  вища  чутливість  до  кремнію,  що  виявлялося  в  більшій  інтен‐

сифікації  ростових  процесів  за  його  внесення  на  всіх  фазах  розвитку 

досліджуваних  культур  (рис. 7. 6).  При  цьому,  найбільше  зниження  алело‐
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патичної активності на тлі кремнію встановлено у фазі бутонізації‐цвітіння (на 

27 %)  та  плодоношення  (21 %)  для  гірчиці,  а  також  для  ріпаку  в  кінці 

вегетаційного періоду (на 25 %). 
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Рис. 7.5. Алелопатична активність ґрунту з‐під рижію (А), гірчиці (Б) й ріпаку 
(В) (біотест – приріст коренів Lepidium sativum), % контролю (за межами 

ділянки): 1 – ґрунт + кремній; 2 – ґрунт без кремнію.  
І – ювенільна фаза; ІІ – бутонізація‐цвітіння; ІІІ – плодоношення. 
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Рис. 7.6. Алелопатична активність ґрунту з‐під рижію (А), гірчиці (Б) й ріпаку 

(В) (біотест – приріст коренів Amaranthus paniculatus), % контролю (за 
межами ділянки): 1 – ґрунт + кремній; 2 – ґрунт без кремнію.  

І – ювенільна фаза; ІІ – бутонізація‐цвітіння; ІІІ – плодоношення. 
 

Оскільки більшість дослідників надають важливого значення гідрофіль‐

ним  сполукам  у  створенні  алелопатичного  потенціалу  прикореневого  сере‐

довища (Гродзинский, 1991; Матвеев, 1994; Salehi‐lisar et al., 2014; Gomes et 
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al.,  2017),  з’ясовувався  їхній  вплив  як  на  фітотоксичні,  так  і  на  цитостатичні 

властивості ґрунту під експериментальними рослинами. 

Алелопатичне  оцінювання  гідрофільних  сполук  ґрунту  з‐під  дослідних 

культур  виявило  посилення  ростових  процесів  по  відношенню  до  рослини‐

акцептора,  а  саме,  огірка  (рис. 7. 7)  на  тлі  застосування  кремнію,  особливо 

для  ріпаку  у  фазі  бутонізації‐цвітіння  (на  20 %)  та  гірчиці  у  період 

плодоношення (на 23 %).  
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Рис. 7. 7. Алелопатична активність гідрофільних сполук ґрунту  

з‐під рижію (А), гірчиці (Б) й ріпаку (В) (біотест – приріст коренів Cucumis 
sativus), % контролю (за межами ділянки): 1 – ґрунт + кремній; 2 – ґрунт без 
кремнію. І – ювенільна фаза; ІІ – бутонізація‐цвітіння; ІІІ – плодоношення 
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Дослідження  цитостатичних  властивостей  ґрунту  показало  посилення 

проліферації  клітин  бічних  коренів  C.  sativus  на  7‐25 %  на  тлі  кремнію, 

особливо  в  кінці  вегетації  (рис. 7. 8).  Причому  внесення  кремнію найбільше 

сприяло підвищенню проліферації для рижію у фазі плодоношення (на 25 %). 
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Рис. 7. 8. Цитостатична дія гідрофільних сполук ґрунту з‐під рижію (А), 

 гірчиці (Б) й ріпаку (В) (біотест – кількість бічних коренів Cucumis sativus),  
% контролю (за межами ділянки): 1 – ґрунт + кремній; 2 – ґрунт без кремнію. 

І – ювенільна фаза; ІІ – бутонізація‐цвітіння; ІІІ – плодоношення. 
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Присутність  кремнію  в  ґрунті  сприяла  зростанню  значень  окисно‐

відновного потенціалу у 1,1‐1,3 рази (рис. 7. 9).  
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Рис. 7. 9. Значення окисно‐відновного потенціалу (ОВП) в ґрунті з‐під рижію 
(А), гірчиці (Б) й ріпаку (В), мВ: 1 – ґрунт + кремній; 2 – ґрунт без кремнію;  
3 – контроль (за межами ділянки). І – ювенільна фаза; ІІ – бутонізація‐

цвітіння; ІІІ – плодоношення. 
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Характер  процесів  був  здебільшого  помірно  відновний,  окрім 

інтенсивно  відновного  для  усіх  культур  без  додавання  кремнію  в  кінці 

вегетації,  що,  очевидно,  пов’язано  з  надмірною  кількістю  мобільних 

органічних  сполук.  Треба  сказати,  що  найвищі  значення  окисно‐відновного 

потенціалу  фіксувалися  для  контрольного  ґрунту  за  межами  ділянок  з 

досліджуваними культурами. 

Фенольні  сполуки  є  важливим  компонентом  фізіолого‐біохімічної 

взаємодії рослин  та,  водночас,  слугують попередниками  гумусових речовин 

(Гродзинский, 1991; Li et al., 2010). Оскільки акумуляція та біотрансформація 

фенольних сполук залежить від численних абіотичних та біотичних чинників 

(Min et al., 2015), аналізували динаміку їхнього вмісту в прикореневому ґрунті 

дослідних рослин. 

Концентрація  фенольних  сполук  збільшувалася  упродовж 

вегетаційного  періоду,  але  меншою  мірою  –  за  присутності  кремнію.  Так, 

рівень  фенолів  був  нижчим  у  1,1‐1,5  рази  за  умов  надходження  кремнію, 

причому  максимально  –  для  гірчиці  в  кінці  вегетації  (рис. 7. 10).  Вміст 

фенольних  сполук  у  ґрунті  за  межами  ділянок  дослідних  рослин  був 

найменшим упродовж усього періоду спостереження. 

Отже,  внесення  кремнієвмісного  добрива  змінювало  алелопатичні  та 

цитостатичні властивості фізіологічно активних сполук прилеглого ґрунту в бік 

посилення  процесів  росту  та  підвищення  проліферації  клітин  рослин‐акцеп‐

торів,  зниження  концентрації  рухливих  органічних  сполук,  зокрема феноль‐

них, та зменшення інтенсивності відновних процесів. У цілому, спостерігався 

позитивний  вплив  кремнію  на  алелопатичний  режим  прикореневого  сере‐

довища рижію, гірчиці та ріпаку впродовж вегетаційного періоду. 
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Рис. 7. 10. Вміст фенольних сполук в ґрунті з‐під рижію (А), гірчиці (Б) та 
ріпаку (В), мг/кг: 1. – ґрунт + кремній; 2. – ґрунт без кремнію; 3. – контроль (за 

межами ділянки). І – ювенільна фаза; ІІ – бутонізація‐цвітіння; ІІІ – 
плодоношення. 
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Виявлено  зростання  в  1,2‐2,5  рази  показників  електропровідності 

ґрунту,  які  визначають  концентрацію  розчинних  хімічних  елементів,  за 

присутності сполук кремнію. Відповідно зафіксовано зростання в ґрунті вмісту 

Са, Сu, Fe, K, Mg, Mn, P (табл. 7.4). 

Таблиця 7.4 
Вміст біогенних елементів у ґрунті за  

внесення кремнієвмісного добрива, мг/кг 
 

Культура  Варіант 
досліду 

Са  Сu  Fe  K  Mg  Mn  P 

Ювенільна фаза розвитку 
Рижій  КС  9059  13,6  11850  2224  2040  209,2 12,2 
  К  6714  12,5 10366 2015 1902  166,7 9,9
Гірчиця  КС  7072  19,6  11310  2316  2014  177,5 12,1 
  К  5834  11,8  10470  2120  1852  167,2 10,0 
Ріпак  КС  9572  23,5  16060  4725  3515  169,8 12,8 
  К  6030  11,8  11190  2021  1647  155,1 11,4 

Фаза бутонізації‐цвітіння 
Рижій  КС  6914  11,1 121,85 21,07 19,03  199,2 4,0
  К  6322  7,5  10560  1950  1826  190,5 3,7 
Гірчиця  КС  6132  10,2  12776  1852  1856  189,0 3,8 
  К  5205  9,4  10605  1659  1720  175,3 2,9 
Ріпак  КС  5466  10,8  11850  1889  1836  192,1 3,5 
  К  5040  9,3  10352  1609  1671  179,9 2,1 

Фаза плодоношення
Рижій  КС  7527  12,6  13590  2365  1932  207,3 193,1
  К  6580  10,7  12410  2069  1728  184,9 111,0
Гірчиця  КС  8198  14,8  13680  2398  2024  226,0 234,2
  К  5473  13,1  8777  1752  1522  159,1 85,6 
Ріпак  КС  7451  12,5  14940  2162  1929  216,2 202,1
  К  5433  11,0 9689 1825 1621  181,4 99,5
 

Заслуговує  на  увагу  факт  різкого  зростання  фосфору  в  ґрунті  у  фазі 

плодоношення,  особливо  за  присутності  кремнієвмісного добрива. Нашими 

попередніми  дослідженнями  доведено,  що  внесення  кремнію  в  ґрунт 

стабілізує  фосфатний  режим  і  призводить  до  збільшення  рухомих  форм 
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фосфору  за  рахунок  активізації  фосфатаз  та  вивільнення  фосфору  з 

малодоступних фосфатів ІІІ і ІV груп. 

Зафіксовано  зменшення  в  ґрунті  Ва,  Сd,  Cr,  Na,  S,  Pb  і  Sr  за  внесення 

сполук  кремнію,  причому  суттєвих  флуктацій  в  концентрації  елементів 

упродовж вегетації рослин не виявлено (табл. 7. 5). 

Таблиця 7. 5 

Вміст важких металів у ґрунті за внесення кремнієвмісної суміші, мг/кг 

Культура  Варіант 
досліду 

Ва  Сd  Cr  Na  S  Pb  Sr 

Ювенільна фаза розвитку 
Рижій  КС  62,4  1,1  17,2  117,5  239,4  7,8  36,3 
  К  71,6  1,2  19,8  139,1  356,1  8,9  39,1 
Гірчиця  КС  65,3  1,2 18,5 121,6 329,5  7,6  35,9
  К  72,8  1,3  19,7  140,8  398,6  8,5  40,2 
Ріпак  КС  63,9  0,2  18,3  100,6  133,2  6,9  15,1 
  К  71,4  1,2  26,7  154,2  378,5  9,2  37,5 

Фаза бутонізації‐цвітіння 
Рижій  КС  61,6  0,9  13,5  146,8  5018  9,3  29,3 
  К  73,3  1,2 15,9 151,7 7560  10,7  32,1
Гірчиця  КС  59,2  0,6  12,0  118,8  7775  8,6  27,2 
  К  75,8  0,8  13,7  149,1  10943  9,8  31,9 
Ріпак  КС  60,9  0,7  12,1  150,3  10683  8,3  25,6 
  К  68,3  0,9  15,3  454,3  12447  9,7  29,0 

Фаза плодоношення 
Рижій  КС  65,4  0,8 10,5 679,8 656  9,5  44,6
  К  98,1  1,2  12,4  752,1  776  10,2  53,2 
Гірчиця  КС  63,3  0,9  12,5  577,2  765  11,7  37,9 
  К  116,8  1,5  15,8  818,4  3804  13,4  63,8 
Ріпак  КС  65,7  0,8  10,3  696,2  652  9,5  38,3 
  К  97,0  1,0  12,7  791,8  894  11,6  59,0 
 

Необхідно  зауважити,  що  значне  підвищення  вмісту  кремнію  в  ґрунті 

дослідних  ділянок  спостерігається  на  тлі  зростання  органічної  речовини. 

Формується  кремнієва матриця, для  якої  притаманні  інформаційно‐ресурсні 

властивості (табл. 7. 6).  
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Таблиця 7.6  
Вміст Si, Zn, Ti і Mn у ґрунті та брасиностероїдів у листках  

дослідних видів рослин за внесення кремнієвмісного добрива, мг/кг 
 
Культура  Варіант 

досліду
Елементи, мг/кг Брасиностероїди,

мкг/г с.р.м. Si  Zn  Ti  Mn 
Ювенільна фаза розвитку 

Рижій  КС  1034  22,4  207,2  28,5  0,09 
  К  874  20,3  192,5  26,2  0,07 
Гірчиця  КС  1128  24,8  213,6  18,3  0,1 
  К  913  17,2 199,4 17,4 0,09 
Ріпак  КС  1056  19,3  248,6  27,9  0,08 
  К  974  17,5  206,3  26,3  0,07 

Фаза бутонізації‐цвітіння 
Рижій  КС  963  35,8  355,9  21,7  0,08 
  К  815  28,7  321,3  18,2  0,05 
Гірчиця  КС  1014  19,2 388,8 29,6 0,09 
  К  756  14,1  302,6  21,4  0,05 
Ріпак  КС  995  28,4  336,9  28,4  0,06 
  К  823  22,9  292,4  27,9  0,04 

Фаза плодоношення 
Рижій  КС  1678  28,6  328,0  147,6  1,37 
  К  1480  24,2 277,5 138,2 0,87 
Гірчиця  КС  1749  50,7  342,8  215,8  1,014 
  К  1344  28,6  257,1  155,3  0,76 
Ріпак  КС  1882  38,3  319,0  184,2  0,97 
  К  1734  26,4  275,6  100,8  0,64 

 

З одного боку, за рахунок цього забезпечується збалансованість систе‐

ми  ґрунт‐рослина‐ґрунт,  а  з  іншого  –  підвищується  адаптивний  потенціал 

рослин  до  абіотичних  та  біотичних  стрес‐факторів.  Підтвердженням  цьому 

слугують  високі  концентрації  титану  і  цинку,  які  відповідають  за  стійкість 

рослин до фітопатогенів та температурних коливань.  

Крім  того,  виявлено  зростання  показників  брасиностероїдів  у  листках 

дослідних  видів,  присутність  яких  свідчить  про  стійкість  імунної  системи 

рослин  до  високих  і  низьких  температур,  посух,  гіпоксії,  засолення  та 

забруднення  ґрунтів,  хвороб,  впливу  пестицидів.  Доведено  плейотропний 
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характер  дії  брасиностероїдів  у  регуляції  ростових  процесів,  фотосинтезу, 

дихання, транспірації, оводненості тканин, гормонального та іонного балансу 

в  експериментальних  умовах  зростання,  а  також  у  захисті  проти  хвороб. 

Брасиностероїди  відіграють  важливу  роль  у  регуляції  розвитку  рослин, 

активізують  поділ  клітин,  стимулюють  розгортання  листків,  диференціацію 

ксилеми.  За  їхньої  нестачі  не  формуються  стовбчастий  мезофіл,  а  також 

утворюється  менша  кількість  провідних  пучків  у  листковій  пластинці. 

Брасиностероїди  також  задіяні  у  формуванні  продуктивності  рослин  за 

рахунок підвищення концентрації РуБісКо та покращення засвоєння макро‐  і 

мікроелементів, що  сприяє  суттєвому  підвищенню  врожайності  сільськогос‐

подарських культур. 

Значні  розбіжності  виявлено  також  у  розподілі  хімічних  елементів  у 

листках дослідних видів рослин. За внесення кремнієвмісного добрива вияв‐

лено зростання у тканинах вмісту Са, Сu, Fe, K, Mg, Мn, Р, В, Si, Ti і Zn (табл. 7. 7).  

Таблиця 7. 7 
Вміст біогенних елементів у листках  

дослідних видів рослин за  внесення кремнієвмісного добрива, мг/кг 
Культура  Варіант 

досліду 
Елемент

Са  Сu Fe K Mg  Ті
1  2  3  4 5 6 7  8

Ювенільна фаза розвитку
Рижій  КС  32940  10,2 1150 35950 2802  18,5
  К  31690  7,0 1031 32070 2415  17,2
Гірчиця  КС  21060  11,8 602,7 13277 2634  14,1
  К  22788  10,9 551,4 12570 2512  11,4
Ріпак  КС  40180  3,5 671,9 20560 4066  12,9
  К  27100  3,1 612,4 19010 3335  10,5

Фаза бутонізації‐цвітіння
Рижій  КС  43770  10,8 297,2 38940 3707  37,1
  К  38330  8,7 279,8 35670 2759  28,5
Гірчиця  КС  28050  9,2 301,9 28500 3374  26,7
  К  19810  7,7 186,1 26340 3156  15,4
Ріпак  КС  23760  7,2 178,9 22660 3573  18,9
  К  15740  6,7 163,2 18540 2986  15,3
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Продовження табл. 7. 7 

1  2  3  4 5 6 7  8
Фаза плодоношення

Рижій  КС  35260  18,3 732,4 20060 4679  30,2
  К  32710  16,1 691,5 18670 4366  26,1
Гірчиця  КС  34240  14,4 673,3 20950 5037  28,5
  К  31610  13,8 502,9 19380 4653  24,2
Ріпак  КС  25100  7,5 363,5 17640 4432  19,2
  К  22250  6,6 324,7 14690 3625  16,1

 

Суттєво,  що  концентрація  бора  зростала  в  14,5‐49,1  рази  у  фазі  пло‐

доношення, а марганцю і кремнію відповідно у 1,6‐12,4 і 8,9‐14,4 рази (табл. 7. 8).  

Таблиця 7. 8  
Вміст В, Р і S у листках дослідних видів рослин  
за внесення кремнієвмісного добрива, мг/кг 

 
Культура  Варіант досліду Елемент 

В Р S
Ювенільна фаза розвитку

Рижій  КС  10,0 88,1 5777
  К  7,8 74,8 5145
Гірчиця  КС  3,8 41,4 5025
  К  2,4 38,0 4987
Ріпак  КС  12,2 70,4 8073
  К  8,3 62,2 6451

Фаза бутонізації‐цвітіння
Рижій  КС  21,8 86,0 7560
  К  19,0 71,9 5818
Гірчиця  КС  30,7 107,5  10775
  К  29,2 87,3 7943
Ріпак  КС  33,2 130,4  11447
  К  21,1 127,0  10683

Фаза плодоношення
Рижій  КС  145,3 7,8 1085
  К  136,8 7,5 1016
Гірчиця  КС  137,7 7,7 1041
  К  111,8 7,2 612
Ріпак  КС  96,4 9,8 948
  К  82,0 9,1 175
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Протилежна  закономірність  спостерігається  щодо  фосфору  та  сірки, 

вміст яких зменшувався наприкінці вегетації відповідно у 11,3‐13,9  і 9,9‐13,3 

рази.  Отримана  залежність  пов’язана  з  формуванням  насіння  та  синтезом 

органічних сполук,  зокрема, олії, білку  та фітину. Тканини дослідних рослин 

відрізнялись  меншим  вмістом  важких  металів  порівняно  з  контрольним 

варіантом. За присутності кремнію надходження до рослин Ва, Сr, Cd, Pb, Sr 

зменшувалось у середньому в 3,1‐7,6 рази (табл. 7. 9). 

Таблиця 7. 9 

Вміст важких металів у листках дослідних  
видів рослин за внесення кремнієвмісного добрива, мг/кг 

 
Культура  Варіант 

досліду 
Елемент 

Ва 
 

Сr  Cd  Pb  Sr 

Ювенільна фаза розвитку 
Рижій  КС  13,6  2,9  0,38  1,5  102,8 
  К  14,5  3,3  0,49  1,9  113,4 
Гірчиця  КС  6,4  2,4  0,14  1,2  71,4 
  К  6,9 3,0 0,21 1,4  79,6
Ріпак  КС  11,4  1,8  0,20  1,1  94,1 
  К  12,8  2,3  0,26  1,3  144,9 

Фаза бутонізації‐цвітіння 
Рижій  КС  12,6  8,3  0,32  6,9  119,0 
  К  13,2  9,0  0,38  8,5  150,5 
Гірчиця  КС  4,5 6,1 0,18 4,5  50,8
  К  6,6  8,4  0,23  5,2  65,3 
Ріпак  КС  7,1  6,2  0,22  6,7  54,7 
  К  8,0  7,9  0,27  7,8  69,8 

Фаза плодоношення 
Рижій  КС  18,3  9,1  1,2  1,9  172,4 
  К  21,6 11,4 1,5 2,2  183,6
Гірчиця  КС  20,5  8,6  1,0  0,5  139,5 
  К  24,8  10,7  1,4  1,8  172,7 
Ріпак  КС  18,9  8,2  1,1  1,1  88,3 
  К  23,4  9,9  1,5  2,3  91,2 
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Суттєві відмінності спостерігаються також у розподілі фотосинтетичних 

пігментів  у  листках.  Зокрема,  внесення  кремнієвмісного  добрива  в  ґрунт 

стимулювало синтез хлорофілу а в листках рижію, гірчиці та ріпаку впродовж 

всього  періоду  вегетації  (табл.  7.  10  ).  Це  підтверджує  наявні  у  науковій 

літературі відомості про те, що біологічно активний кремній стимулює ріст та 

фотосинтетичну  продуктивність  у  вищих  рослин  (Zaimenko  et  al.,  2018). 

Внесення кремнієвмісного добрива помітно стимулювало розвиток листкової 

пластинки у гірчиці та ріпаку (рис. 7. 11).  

Таблиця 7.10 

Вміст фотосинтетичних пігментів у листках  
рижію, гірчиці та ріпаку за внесення кремнієвмісного добрива та у контролі  

(середнє арифметичне ± стандартна похибка) 
 

 Куль‐
тура 

Термін 
відбору 

Хлорофіл а  Хлорофіл b  Каротиноїди 
контроль  кремній  контроль  кремній  контроль  кремній 

Ри
ж
ій
 

 

Фаза 
ювенільного 
розвитку  7,4±0,40  8,2±0,28  2,7±0,02  2,8±0,01  1,2±0,01  1,6±0,01 
Бутонізації‐
цвітіння  11,7±0,32  12,5±0,29 3,7±0,01  3,4±0,02  2,4±0,01  2,4±0,01 
Плодоно‐
шення  ‐  ‐  ‐  ‐  ‐  ‐ 

Гір
чи

ця
 

 

Фаза 
ювенільного 
розвитку  8,0±0,25  10,3±0,28 2,9±0,01  3,6±0,01  1,3±0,02  1,7±0,01 
Бутонізації‐
цвітіння  12,9±0,22  13,8±0,31 4,2±0,02  5,0±0,01  2,8±0,01  2,8±0,02 
Плодоно‐
шення  10,5±0,28  14,4±0,32 7,0±0,02  6,4±0,02  4,2±0,01  4,6±0,02 

Рі
па

к   

Фаза 
ювенільного 
розвитку  9,6±0,33  10,6±0,27 3,5±0,02  3,7±0,02  1,7±0,01  2,1±0,01 
Бутонізації‐
цвітіння  15,5±0,25  16,8±0,41 5,5±0,01  3,5±0,02  3,6±0,02  2,1±0,02 
Плодоно‐
шення  ‐  ‐  ‐  ‐  ‐  ‐ 

* У фазі плодоношення рижію та ріпаку зелені листки були вже відсутні  
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Рис. 7. 11. Листки рослин гірчиці (А) та ріпаку (Б) 
 в контролі (1) та за внесення кремнієвмісного добрива (2), фаза цвітіння 

 

Для хлорофілу b спостерігалось суттєве зростання біосинтезу пігменту в 

листках  за  внесення  кремнієвмісного  добрива  порівняно  з  контролем  у 

ювенільній фазі розвитку.  

У  фазі  бутонізації‐цвітіння  в  листках  рижію  та  ріпаку,  а  також  у  фазі 

плодоношення  у  листках  гірчиці  вміст  хлорофілу  b  дещо  знижувався  за 

присутності  кремнію.  Подібну  тенденцію  спостерігали  також  для 

каротиноїдів.  Хлорофіл  b  і  каротиноїди  є  відомими  захисними 

біомолекулами,  вміст  яких  зростає  у  відповідь  на  стресові  умови 

середовища, зокрема на підвищену температуру або посуху. Оскільки другий 

і  третій  відбір  було  зроблено  упродовж  найспекотнішого  та  посушливого 

періоду  вегетації,  виявлене  зниження  вмісту  хлорофілу  b  і  каротиноїдів 

можна розглядати як ознаку менш напруженого стресового стану у дослідних 

рослин за внесення кремнієвмісного добрива порівняно з контролем. 

Пом`якшення  стресових  умов  за  внесення  кремнієвмісного  добрива  

підтверджують  також  результати  аналізу  вмісту  вторинних  метаболітів 

(флавоноїдів, антоціанів, танінів) у листках дослідних видів (табл. 7. 11).  
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Таблиця 7. 11  
Вміст вторинних метаболітів у листках рижію,  

гірчиці та ріпаку за внесення кремнієвмісного добрива і в контролі  
(середнє арифметичне ± стандартна похибка) 

 

Куль‐
тура 

Термін 
відбору 

Флавоноїди, мг/г сир. 
маси 

Антоціани, % до сир. 
маси 

Таніни, % до сух. 
маси 

контроль   кремній  контроль  кремній 
кон‐
троль  кремній

Ри
ж
ій
 

 

Фаза юве‐
нільного 
розвитку  8,58±0,3   8,25±0,5  0,11±0,01 0,04±0,01  27,2±1,1   8,0±0,6 
Бутонізації‐
цвітіння  11,56±0,2  8,76±0,2  0,13±0,01  0,07±0,01  16,2±0,8  12,4±0,4 
Плодоно‐
шення  ‐  ‐  ‐  ‐  ‐  ‐ 

Гір
чи

ця
 

 

Фаза юве‐
нільного 
розвитку  13,86±0,4   12,80±0,3 0,07±0,01 0,05±0,01  11,4±0,9   9,3±0,7 
Бутонізації‐
цвітіння  17,64±0,4  15,27±0,2  0,18±0,01  0,08±0,01  8,3±0,6  7,2±0,8 
Плодоно‐
шення  7,99±0,2  5,64±0,3  0,13±0,01  0,06±0,01  7,3±0,5  6,4±0,7 

Рі
па

к   

Фаза юве‐
нільного 
розвитку  13,90±0,2   13,25±0,4 0,09±0,01 0,04±0,01  17,4±0,8   11,1±0,6
Бутонізації‐
цвітіння  17,83±0,3  18,29±0,5  0,11±0,01  0,06±0,01  15,3±0,9  11,2±0,8 
Плодоно‐
шення  ‐  ‐  ‐  ‐  ‐  ‐ 

* У фазу плодоношення у рижію та ріпаку зелені листки були вже відсутні  

У  фазі  бутонізації‐цвітіння  (липень),  період,  коли  рослини  найбільше 

відчували  на  собі  вплив  високих  температур  та  посухи,  спостерігалось 

зростання вмісту флавоноїдів та антоціанів у листках рижію, гірчиці й ріпаку. 

Це  свідчить  про  зростання  напруженості  стресового  стану  в  цих  рослин, 

оскільки флавоноїди  та  антоціани  є  відомими маркерами  стресового  стану, 

біосинтез яких підвищується у відповідь на несприятливі умови середовища 

(Chalker‐Scott,  1999;  Калита,  2013).  За  внесення  кремнієвмісного  добрива 

вміст флавоноїдів та антоціанів в листках суттєво знижувався.  
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Таніни  також  задіяні  у  захисних  реакціях  рослин  до  біотичних  і 

абіотичних стресів та розглядаються як маркери стресового стану  (Григорюк 

& Нестерова, 2017). Крім того, ці сполуки регулюють процеси росту і розвитку 

рослин. Механізм  їхньої дії на рослинний організм остаточно не з’ясований, 

проте відомо, що   таніни здатні  гальмувати розпад  ІОК, а також виступати у 

ролі  антагоністів  і  регуляторів  гіберелінів.  Зростання  вмісту  танінів  також 

може  свідчити  про  зниження  метаболічної  активності  та  процесів  росту, 

пов`язаних,  наприклад,  з  підготовкою  до  періоду  спокою  (Григорюк  & 

Нестерова, 2017). Сезонна динаміка вмісту танінів у листках рижію, гірчиці та 

ріпаку  була  схожою  і  характеризувалась  максимумом  у  ювенільній  фазі 

розвитку, з наступним зниженням у фазі бутонізації‐цвітіння та плодоношен‐

ня  (у  гірчиці).  Очевидно  це  пов`язано  зі  зменшенням  активності  вегетатив‐

ного  росту  та  активізацією  синтезу  гормонів  цвітіння  (гіберелінів),  які  є 

антагоністами  танінів.  За  внесення  кремнієвмісного  добрива  простежується 

суттєве  зниження  вмісту  танінів  у  листках,  що  свідчить  про  зниження 

напруженості стресового стану та більш активний перебіг ростових процесів у 

дослідних рослин (рис. 7. 12). 

 

Рис. 7. 12. Дослідна ділянка рослин рижію, гірчиці  
та ріпаку за внесення кремнієвмісного добрива (Si) та у контролі (K) 
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Таким  чином  максимальний  вміст  органічної  речовини  в  ґрунті 

характерний  для  початкового  періоду  вегетації  рослин.  У  подальшому 

спостерігається поступове зменшення кількісних параметрів лабільних форм 

Гумусу  в  результаті  формування  стабільних  форм,  що  свідчить  про 

зменшення активності лакази та концентрації НСО3. 

Найвищий  рівень  Гумусу  зафіксовано  у  варіантах  з  кремнієвмісним 

добривом  за  вирощування  ріпаку,  що  пов’язано  зі  зростанням  активності 

лакази та депонуванням СО2 за рахунок стимуляції азотфіксації. 

Мікробіологічний  моніторинг  ґрунту  експериментальних  культур  за 

присутності  сполук  кремнію  засвідчує  збільшення  чисельності 

мікроорганізмів  у  дослідних  варіантах.  Виключенням  стала  чисельність 

мікроміцетів  у  фазі  бутонізації‐цвітіння,  також  амоніфікаторів  у  ґрунті  під 

рижієм та ріпаком. 

Доведено  позитивний  вплив  кремнію  на  алелопатичний  режим 

прикореневого середовища рижію, гірчиці та ріпаку впродовж вегетаційного 

періоду.  Рівень  фенолів  знизився  у  1,1‐1,5  рази  за  умов  надходження  

кремнію, причому, максимально для гірчиці в кінці вегетації. 

Виявлено  суттєве  підвищення  вмісту  кремнію  в  ґрунті  дослідних 

ділянок,  завдяки  чому  на  тлі  зростання  органічної  речовини  формується 

кремнієва матриця, для якої притаманні інформаційно‐ресурсні властивості. З 

одного  боку,  в  результаті  цього  забезпечується  збалансованість  системи 

ґрунт‐рослина‐ґрунт,  з  іншого  –  підвищується  адаптивний  потенціал  рослин 

до абіотичних та біотичних стрес‐факторів. 

Показано  зростання  концентрації  титану  і  цинку  за  внесення 

кремнієвмісного  добрива,  які  відповідають  за  стійкість  рослин  до 

фітопатогенів і температурних коливань. 

Встановлено  підвищення  показників  брасиностероїдів  у  листках 

дослідних  видів,  присутність  яких  свідчить  про  підтримку  імунної  системи 
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рослин  до  високих  та  низьких  температур,  посух,  гіпоксії,  засолення  та 

забруднення ґрунтів, хвороб, впливу пестицидів. 

Заслуговує на увагу факт різкого зростання фосфору в ґрунті дослідних 

ділянок  у фазі  плодоношення  за рахунок  активізації фосфатаз  і  вивільнення 

фосфору з малодоступних фосфатів ІІІ і ІV груп. 

Внесення  кремнієвмісного  добрива  в  ґрунт  стимулювало  синтез 

хлорофілу  а  у  листках  рижію,  гірчиці  та  ріпаку  впродовж  вегетаційного 

періоду, для хлорофілу b виявлено зростання його  концентрації у ювенільну 

фазу розвитку. 

Пом’якшення  стресових  умов  за  внесення  кремнієвмісного  добрива 

підтверджується зростанням вмісту вторинних метаболітів у листках, зокрема 

флавоноїдів, антоціанів і танінів. 

Опрацювання методів  безвідходної  утилізації  побічної  продукції. На 

2022  рік  загальна  площа  посівів  ріпаку  по  Україні  становить  1,4 млн. га, 

гірчиці  відповідно19,6  тис.  га.  Згідно  технологічного  регламенту  рослинну 

масу цих культур після збирання врожаю  залишають на поверхні ґрунту, що 

негативно позначається на формуванні лабільних форм Гумусу.  

Проведені нами дослідження засвідчили, що внесення кремнієвмісних 

добрив у кількості 400 кг/га під культури ріпаку  та  гірчиці позитивно позна‐

чилось  на  мікробіологічній  і  ферментативній  активності  ґрунту,  просте‐

жується зменшення його фітотоксичності, особливо в кінці вегетаційного пе‐

ріоду  рослин.  Присутність  рухливих  форм  кремнію  забезпечує  зростання 

органічної  речовини,  в  результаті  чого  формується  кремнієва  матриця,  для 

якої притаманна  інформаційно‐ресурсна властивість. Це позитивно познача‐

ється на збалансованості системи ґрунт‐рослина‐ґрунт та сприяє підвищенню 

адаптивного потенціалу рослин до абіотичних і біотичних чинників.  

Вперше  виявлено,  що  у  варіантах  з  кремнієвмісним  добривом 

спостерігається  зростання  активності  лакази,  пов’язаної  зі  швидкістю 
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деструкції  лігнінвмісних  рослинних  решток  та  розвитку меланінвмісних мік‐

роміцетів, задіяних у трансформації целюлози. За рахунок цього відбувається 

депонування СО2 в  ґрунті, який у подальшому використовується для форму‐

вання  стабільних  форм  Гумусу.  Підтвердженням  цьому  слугує  зростання 

чисельності азотфіксуючих мікроорганізмів та вмісту аміачної форми азоту.  

З  огляду  на  викладене  вище,  було  проведено  лабораторні  експери‐

менти по дослідженню кремнієвмісної суміші, до складу якої входять подріб‐

нені  до  фракції  1‐2  мм  рослинні  рештки  ріпаку  та  гірчиці.  Кремнієвмісна 

суміш містить  кремнієвмісний мінерал  анальцим як мінеральну  складову;  у 

якості  органічної  складової  –  рослинні  відходи,  попередньо  оброблені 

культуральною рідиною штаму Trichoderma lignorum. У результаті поєднання 

рухливих  форм  кремнію  з  органічними  відходами  рослинного  походження 

забезпечується  синтез  полі‐  та  монокремнієвих  кислот,  які  дозволяють 

оптимізувати агрохімічні, агрофізичні та біологічні показники ґрунту, а також 

стимулювати  фізіолого‐біохімічні  процеси  в  рослинах,  підвищити  їхню 

стійкість до фітопатогенів. Сама присутність кремнію в складі суміші активізує 

розвиток  мікроорганізму  –  деструктора,  за  рахунок  чого  в  3,5  рази  скоро‐

чується термін трансформації рослинних решток. 

Планується  продовження  проведення  дослідження  з  вивчення  впливу 

кремнієвмісної суміші на розкладання побічної продукції ріпаку та гірчиці. 
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РОЗДІЛ 8. 
 

РОЛЬ КРЕМНІЮ В МЕХАНІЗМАХ ЗВОРОТНОГО ЗВ’ЯЗКУ В 
СИСТЕМІ ҐРУНТ‐РОСЛИНА‐ҐРУНТ 

 
 

Спроможність  рослин поглинати  кремній  з  ґрунту,  накопичувати його  в 

тканинах  і  повертати  за  рахунок  опаду  формує  складну  мережу  зворотніх 

зв’язків  у  екосистемах.  У  поглинанні  та  накопиченні  Si  рослинами  задіяні 

екосистемні  послуги,  пов’язані  зі  структурно‐функціональною  організацією 

ґрунту,  накопиченням  біомаси  та  секвестрацією  вуглецю.  Багаточисельні 

функції  кремнію  в  біології  рослин  передбачають  захист  від  абіотичних  і 

біотичних  стресів  та  є  ключовим  фактором  структурно‐функціональної 

організації ґрунтової екосистеми. 

У  ґрунті  кремній  перебуває  в  різних  формах:  у  вигляді  твердих  криста‐

лічних форм первинних  (кварцу, польові шпати, слюди)  і вторинних силікат‐

них мінералів (глини), а також мікрокристалічних мінералів (алофан, імоголіт, 

опал).  Аморфний  кремнезем містить  як  кремній мінерального  походження, 

який  входить  до  складу  педогенних  оксидів,  в  першу  чергу,  заліза,  так  і 

біогенний кремній, зокрема фітолітів (Matichenkov et al., 2001). Всі ці форми і 

сполуки є джерелом розчинних моно‐ і полікремнієвих кислот, доступних для 

рослин  (Opfergelt  et  al.,  2009).  Полікремнієва  кислота  мобілізується  під  час 

розчинення  твердих кристалічних мінералів  і  трансформується в монокрем‐

нієву  кислоту,  якщо  концентрація  Si  набагато  нижча  насичення,  але  зі 

збільшенням концентрації кремнієвої кислоти в розчині відбувається поліме‐

ризація монокремнієвої в полікремнієву кислоту (Belton et al., 2009). 

Відомо,  що  зростання  доступності  кремнію  в  ґрунті  призводить  до 

мобілізації оксидів заліза Fe (ІІ) на  поверхні мінеральних часток, тим самим 

збільшуючи  доступність  фосфору  для  рослин  (Ma  et  al.,  1991).  Кремнієва 
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кислота є незарядженим бідентатним лігандом при рН ґрунту ˂7. Молекула 

монокремнієвої кислоти знаходиться у прямій конкуренції  залежно від рН з 

моно‐ і бідентатними лігандами молекули фосфата (Taylor, 1995; Meunier, et 

al., 2018; Schaller et al., 2020). Хоча у кремнієвої кислоти більш слабка енергія 

зв’язків з оксидами заліза, ніж у фосфата, вона може витісняти фосфат, якщо 

її  концентрація  в  розчині  достатньо  висока.  Другою  важливою  ознакою 

кремнієвої кислоти є те, що вона спроможна полімеризуватися при високих 

концентраціях  як  у  розчині,  так  і  на  поверхні  оксида  заліза,  синтезуючи 

олігомерні зв’язки Si‐O‐Si (Pokrovski et al., 2003). Здатність сорбції у полікрем‐

нієвої  кислоти  вища,  ніж  у  монокремнієвої,  чим  пояснюється  спроможність 

кремнієвої  кислоти  при  більш  високих  концентраціях  витісняти  фосфат  зі 

зв’язаних  форм.  Не  лише  поживні  сполуки  Р  і  N  мобілізуються  кремнієм  з 

ґрунту, але й важкі метали, зокрема Al, Cr, Cd, Pb, Zn (Bhat et al., 2019). Отже, 

в  ґрунтових  системах  з  високою  концентрацією  рухливих  форм  кремнію 

осідання  аморфного  кремнезему  на  поверхні  мінералів  впливає  на 

іммобілізацію  важких  металів  (Gutiérrez‐Castorena  et  al.,  2005).  Крім  того, 

аморфний  кремнезем  сприяє  підвищенню  водоутримуючої  спроможності 

ґрунту  за  рахунок  формування  сілікогеля  з  полікремнієвої  кислоти  або 

колоїдного  аморфного  кремнію  (Iler  et  al.,  1973).  Збільшення  частки 

аморфного кремнезема на 1‐5% підвищувало вміст води на 40‐60% (Liang et 

al.,  2005).  Участь  аморфного  кремнезема  у  підвищенні  водоутримуючої 

спроможності ґрунту поки не з’ясована.   

Таксони рослин відрізняються за кількісними показниками Si, які прояв‐

ляються  в  зміні  вмісту  кремнію,  механізмах  поглинання,  формах  і  місцях 

відкладу. Зокрема, якщо кількість Si в рослині значно вища, ніж у ґрунтовому 

розчині,  рослина  поглинає  кремній  активніше;  якщо  кількість  Si  в  рослині 

значно нижча, ніж у ґрунтовому розчині, рослина не поглинає кремній; якщо 

вміст  Si  в  рослині  та  ґрунті  однаковий,  поглинання  пасивне  (Henriet  et  al., 
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2006). Динамічний  підхід  більш  прийнятний,  оскільки  свідчить  про  реакцію 

рослин на різну доступність кремнію в ґрунті і, до того ж, може вказувати на 

внутрішні фізіологічні драйвери цих реакцій (Richmond et al., 2003). Зокрема, 

деякі види збільшують активне поглинання Si за умови, коли доступність його 

в ґрунті нижча, ніж передбачено потребою в ньому для рослин (Faisal et al., 

2012).  У  деяких  випадках  це  відбувається  за  рахунок  експресії  генів‐

транспортерів Si та їхньої щільності в умовах низької доступності, що свідчить 

про  дійсно  активне  поглинання,  яке  залежить  не  тільки  від  механізмів 

активного поглинання, але й від прояву фізіологічних реакцій цих механізмів. 

Крім  того,  поглинання  Si  також  залежить  від  швидкості  транспірації,  при 

цьому деякі види демонструють пасивне (обумовлене транспірацією) погли‐

нання  Si  в  доповнення  до  активного  (кероване  транспортером)  поглинання 

(Faisal et al., 2012). 

У  даний  час  досліджено  декілька  транспортерів  і  генів,  які  задіяні  в 

поглинанні  та  накопиченні  кремнію.  Хоча  вивчення  транспортерів  Si  зо‐

середжено  на  рослинах  рису  та  інших  злаків,  перший  рослинний  ген, 

задіяний в регуляції його накопичення, було виявлено у гарбуза Cucurbita sp., 

зокрема утворення фітомів у скоринці плоду (Ma et al., 2006). У подальшому 

для  злаків  було  відкрито  чотири  транспортери  Lsi,  які  належать  до 

аквапоринів NІР. Першим із відкритих транспортерів був транспортер притоку 

Lsi 1, розташований в дистальній плазматичній мембрані клітин екзодерми і 

ендодерми  кореня  (Ma  et  al.,  2007).  Транспортер  відтоку  на  проксимальній 

плазматичній мембрані тих же клітин (Lsi 2) переносить кремній із епідерми в 

кортекс  і  далі  завантажує  його  з  епідерми  в  ксилему  (Yamaji  et  al.,  2008). 

Третій  транспортер  (Lsi  6)  знаходиться  у  пагонах  і  відповідає  за 

розвантаження ксилеми (Ma & Yamaji, 2015). У вузлах пагонів злаків Lsi 6 і Lsi 

3  задіяні  в  розподілі  Si між  гілками  (Yamaji & Ma,  2014;  Yamaji  et  al.,  2015). 

Разом ці транспортери утворюють складну кооперативну систему поглинання 
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і розподілу кремнію в рослинах з деякими варіаціями в деталях того, де саме 

локалізований кожний транспортер у межах певного виду (Sahebi et al., 2015; 

Deshmukh et al., 2013). Оскільки, на даний час, транспортери Si ідентифіковані 

не  лише  у  злаків,  але  і  в  інших  видів  рослин  доречно  припустити,  що 

походження  цих  механізмів  таке  ж  стародавнє,  як  і  походження  наземних 

видів  (Yamaji  &  Ma,  2014).  Хоча  залишається  не  з’ясованим  питання 

транспорту Si у нетрав’яних видів.  

Окрім  внутрішніх  транспортерів,  на  поглинання  і  накопичення  Si  в 

рослинах  впливають  також  зовнішні  чинники,  до  яких  належать  як  пасивні 

механізми  поглинання,  залежні  від  транспіраційного  потоку,  так  і  активні 

механізми,  викликані  біотичними  стресорами.  Оскільки  кремній 

поглинається  з  ґрунтового  розчину  у  вигляді  монокремнієвої  кислоти,  його 

пасивне  надходження  залежить  від  транспіраційного  потоку.  З’ясовано, що 

концентрація кремнію в рослинах зростає відповідно до збільшення запасів 

вологи в ґрунті (Hattori et al., 2005; de Melo et al., 2003; Mayland et al., 1991; 

Jenkins  et  al.,  2011;  Rosen  & Weiner,  1994;  Katz  et  al.,  2018).  З  іншого  боку, 

транспірація  розглядається  як  діюча  сила  поглинання  води  і  в  такий  спосіб 

вміст  кремнію  може  бути  індикатором  транспіраційного  стресу  в  рослинах 

(Yamaji et al, 2015; Euliss et al., 2005; Katz et al., 2013, 2014, 2018; Johnston et 

al., 1967). Крім того, високий рівень Si в рослинах за умов посухи, пов'язаний 

також з активним його поглинанням через наявність стресової ситуації. 

Дискусійним  залишається  питання  участі  кремнію  в  депонуванні  СО2  та 

його  ролі  в  регулюванні  вуглецевого  циклу  (Takahashi  et  al.,  2008;  Li  et  al., 

2014). 

Отже,  питання  штучного  поділу  рослин  за  спроможністю  поглинати  і 

накопичувати кремній потребує детального вивчення, оскільки, по‐перше, не 

існує  чіткого  кількісного  визначення  його  концентрації  в  тканинах,  хоча 

вважається, що поріг складає 1% Si на суху вагу або 1000 фітолітів на 1 г сухої 
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речовини  (Cooke & Degabriel,  2016). По‐друге,  хоча мінливість  вмісту  Si має 

чітку  таксономічну  визначеність,  яка  коливається  у  межах  70%,  філогене‐

тичний  аналіз  свідчить  про  значно  більшу  флуктацію  його  концентрації 

(Prychid  et  al.,  2003).  На  даний  час  існує  інформація  відносно  розподілу 

кремнію  в  органах  лише  29  родин  вищих  рослин  і  фрагментарні  відомості 

щодо  мохоподібних  і  папоротеподібних    (Mazumdar,  2011;  Nguyen  et  al., 

2019; Golokhvast et al., 2014).  

Як  зазначалося,  після  поглинання  коренями  монокремнієва  кислота 

транспортується нагору до пагону через ксилему, при цьому транспіраційний 

потік є основною  рушійною силою (Schoelynck et al., 2016; Sahebi et al, 2015; 

Mitani  & Ma,  2005;  Katz  et  al.,  2013).  Всередині  рослинних  тканин  великий 

відсоток монокремнієвої  кислоти  полімеризується  спочатку  в  полікремнієву 

кислоту,  а  потім  –  в  аморфний  кремнезем,  за  участі  амінів,  амінокислот  і 

пролінів  (Coradin  et  al,  2001;  Mann,  et  al.,  1986;  Perry  et  al.,  2000;  Currie  & 

Perry,  2007).  Існує  багато  форм  біогенного  кремнію  в  рослинах,  найбільш 

досліджені  з  яких  представлені  у  подвійному  шарі  кутикули,  зв’язані  з 

клітинною  стінкою  і  фітоліти,  присутні  всередині  клітини  (Peleg  et  al.,  2010; 

Hodson, 2019; Sakai & Thom, 1979; Zhang et al., 2013; He et al., 2015; Ueno & 

Agarie,  2005;  He  et  al.,  2013;  Rudall  et  al.,  2014).  Залишається  нез’ясованим 

питання  відмінностей  у  процесах,  задіяних  у  формуванні  різних  форм 

аморфного кремнезему та швидкості їх утворення (Neumann et al., 2019).  

Зокрема,  деякі  науковці  використовують  термін  фітоліти  для  опису 

біогенного  кремнію,  зосередженого  в  коротких  епідермальних  клітинах  і 

трихомах,  інші  –  для  визначення  будь‐якої  форми  аморфного  кремнезему 

використовують  поняття  довгих  епідермальних  клітин,  фітоліти  яких  поєд‐

нанні з кремнієвими скелетами (Katz et al., 2018). Розподіл Si серед цих форм 

досить  умовний,  оскільки  більш  ранні  дослідження  свідчать,  що  фітоліти 

складають  до  90%,  а  більш  сучасні  посилання  твердять,  що  лише  15‐80% 
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складають  фітоліти,  а  інші  форми  рослинного  кремнію  представлені 

полікремнієвою кислотою (Matichenkov et al., 2008; Motomura et al., 2004).  

Не зважаючи на багаторічне вивчення механізмів розподілу Si в тканинах 

рослин, яке присвячено в основному злакам, все ще існує брак знань з цього 

питання.  Оскільки,  по‐перше,  накопичення  кремнію  не  відбувається  в  усіх 

клітинах  і  тканинах  одночасно  та  з  однаковою  швидкістю.  Типове  накопи‐

чення  Si  в  спеціалізованих  клітинах,  зокрема  в  коротких  епідермальних,  є 

конституційним  і  відбувається  упродовж  усього  росту,  причому  цьому  пе‐

редує факультативне атипове відкладення Si в неспеціалізованих клітинах, а 

саме:  довгих  епідермальних  і  продихових  клітинах,  функціонування  яких 

залежить  від  достатньої  кількості  води,  кремнію  та  транспірації  (Fernández 

Honaine  et  al.,  2012;  Hodson  et  al.,  1985).  По‐друге,  епідермальні  короткі 

клітини  зазнають  диференціації  для  того,  щоб  бути  спеціалізованими 

клітинами, які накопичують Si, а потім зазнають анатомічних та фізіологічних 

змін,  зокрема лігніфікації  та  апоптозу, для його розміщення  (Kaufman et  al., 

1970;  Hodson  et  al.,  1986).  Загалом,  спочатку  Si  відкладається  в  клітинній 

стінці та інших зовнішніх частинах клітини, а заповнення клітинного простору 

кремнієм відбувається пізніше (Lanning et al., 1983). 

Необхідно  зауважити  також  на  відмінностях  у  концентрації  кремнію  в 

різних органах рослин. Більшість  інформаційних відомостей свідчить про те, 

що епідермальні  тканини  трав’яних видів рослин,  зокрема листків  і  суцвіть, 

містять  більшу  концентрацію  Si  та  фітолітів  –  у  порівнянні  з  коренями  і 

стеблами. При цьому, для деревних видів притаманний більш високий вміст 

Si у деревині та корі (Fernández Honaine et al., 2017; Schaller et al., 2012; Albert 

et  al.,  2008;  Tsartsidou  et  al.,  2007;  Portillo  et  al.,  2014;  Das  et  al.,  2014; 

Schoelynck et al., 2012). Суцвіття відрізняються вищим рівнем кремнію порів‐

няно з іншими вегетативними органами рослин. 
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Розглянуті  три  типи  мінливості  (між  таксонами,  між  формами  і  між 

частинами  рослин),  проявляються  у  морфології  фітолітів  та  морфотипів 

(Novello & Barboni, 2015; Mercader et al., 2010; Golokhvast, 2014; Ackermann et 

al., 2014). На даний час залишаються нез’ясованими питання щодо цих типів 

мінливості  на  фізіологічному,  онтогенетичному  та  екологічному  рівнях, 

потребують детального  вивчення процеси накопичення  Si  в  органах  рослин 

різного  екоморфотипу,  які  розкривають  механізми  фізіологічної  і  онтоге‐

нетичної мінливості в часі та просторі еволюційного розвитку (Katz, 2020; Zhu 

&  Gong,  2014).  Крім  того,  недостатньо  досліджено  функціональну  роль 

кремнію у формуванні екосистем і управлінні процесами ґрунтоутворення. 

Відомо,  що  кремній  підвищує  стійкість  рослин  до  стрес‐факторів, 

зокрема  посухи  та  засолення  (Coskun,  et  al.,  2016;  Wilkinson,  2000;  Munns, 

2002;  2003).  Si  сприяє  розвитку  коренів  і  покращує  поглинання  води,  за 

рахунок  чого  рослини  підтримують  продихову  провідність  (Steudle  & 

Peterson,  1998).  Хоча механізми  та форми  Si,  які  задіяні  в  цих  процесах,  до 

кінця  не  з’ясовані,  однак  накопичення  кремнію  в  стінках  епідермальних 

клітин  частково  покращує  поглинання    води  (Gao  et  al.,  2006).  Кремній, 

присутній  у  клітинній  стінці,  також  задіяний  у  регуляції  руху  та  провідності 

продихів  і в такий спосіб управляє втратами води через продихи (Gao et al., 

2004;  Agarie  et  al.,  1999;  Shakoor,  2014).  Підкутикулярний  шар  Si  зменшує 

втрати  води  з  кутикули  на  23%. Отже,  кремній  у  розчинній формі  активізує 

внутрішні  фізіологічні  механізми,  які  пом’якшують  окислювальне  пошкод‐

ження  поверхні,  викликане  посухою,  і  призводять  до  зростання  швидкості 

процесів фотосинтезу (Shen et al., 2010; Thorne et al. 2020; Wang et al., 2019; 

Gong  et  al.,  2005;  Detmann  et  al.,  2012;  Agarie  et  al.,  1996).  Зокрема, 

епітельмальні фітоліти діють як призми, що збирають більше світла у мезофі‐

лі.  Крім  того,  аморфний  кремнезем  у  ґрунті  збільшує  його  водоутримуючу 

спроможність та відповідне зростання надходження води до рослин.  
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Потребує  детального  аналізу  функціональна  роль  кремнію  у  захисті 

рослин  від  патогенів  та  шкідників,  яка  полягає  як  у  відштовхуванні,  так  і  в 

перешкоджанні  їхнього  проникнення  в  тканини.  Фізичне  відштовхування, 

пов’язане  з  трихомами  і  короткими  епідермальними  клітинами,  які  містять 

кремній, відбувається за рахунок зростання шорсткості поверхні листка. Якщо 

відштовхування  не  відбувається  або  недостатньо  ефективне,  кремній  попе‐

реджає  проникнення  фітопатогенів  у  рослинні  тканини  завдяки  фітолітам 

епідермальних  клітин  і  армованих  Si  клітинних  стінок  (Kvedaras  et  al.,  2007; 

Grime et al., 1968; Samuels et al., 1991; 1994; Hall et al., 2020; Li et al., 2018). 

З огляду на багаточисленні фізичні, хімічні та фізіологічні функції кремнію 

у  життєдіяльності  рослин,  а  також  переваги,  які  отримують  рослинні 

організми за його присутності, постає питання щодо спроможності Si частково 

заміщувати  вуглець.  Відомо,  що  Si  в  рослинах  компенсується  за  рахунок 

лігніну, целюлози, фенолів і поживних речовин (Neu et al., 2017; Schaller et al., 

2012). Показано, що трави накопичують меншу кількість Si за більш високих 

концентрацій СО2 в повітрі (Carey &Fulweiler, 2012; Maguire et al., 2017). Хоча 

для  інших  видів  рослин,  зокрема  для  цукрової  тростини  та  деяких  видів 

дерев,  які  накопичують  кремній,  виявленої  тенденції  щодо  атмосферного 

вуглецю  не  встановлено  (Hartley  &  DeGabriel,  2016).  Відсутня  також 

інформація  щодо  відмінностей  у  накопиченні  Si  у  рослин  з  різним 

вуглецевим метаболізмом, зокрема С3 і С4 (Cooke & Degabriel, 2016). 

Мінеральне  вивітрювання  –  це  кінцеве  джерело  Si  в  наземних  еко‐

системах,  яке  знаходиться  під  контролем  клімату,  ґрунтових  умов  та 

рослинності (Cornelis et al., 2010; Opfergelt et al., 2009). Розчинення мінералів 

відбувається  значно  повільніше,  ніж  аморфного  кремнезему,  зокрема  фіто‐

літи  в  102‐104  рази  більш  реактивні  порівняно  з  глинистими  мінералами  і 

первинними  силікатами  при  рН  ґрунту  в  межах  4‐8  (Dürr,  et  al.,  2011).  Біо‐

доступний кремній накопичується, в основному, в біомасах лісів (11,7 Тмоль 
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рік‐1), степів (13,3 Тмоль рік‐1), агроценозів (29,4 Тмоль рік‐1), що складає від 

загальної кількості Si у всіх наземних екосистем 84 Т моль рік‐1 (Müller, et al., 

2013).  Антропогенний  вплив  безпосередньо  впливає  на  колообіг  Si  через 

інтенсифікацію  землекористування  в  результаті  змін  властивостей  ґрунту  і 

рослинності (Vandevenne, et al., 2015 a,b; Clymans et al., 2011).  

Викиди парникових газів та кліматичні зміни мають негативний вплив на 

потоки кремнію, зокрема загальний аморфний пул Si в ґрунтах помірної зони 

зменшився  близько  10%  за  останні  5000  років  через  людську  діяльність 

(Sommer  et  al.,  2013).  А  враховуючи  те, що  аморфний  кремнезем  підвищує 

водоутримуючу спроможність ґрунтів, безпосередньо впливає на доступність 

елементів мінерального живлення та органічних сполук, забезпечує стійкість 

рослин до абіотичних і біотичних стрес‐факторів, питання оптимізації запасів 

біогенного  Si  набуває  величезної  актуальності.  Необхідно  зауважити,  що 

концентрація  аморфного  кремнію  значно  нижча  в  ґрунтах  сільськогоспо‐

дарського  призначення  порівняно  з  природними  лісовими  і  степовими 

екосистемами.  Це  пов’язано  з  виносом  Si  врожаєм  (Meunier  et  al.,  2008; 

Vandevenne  et  al.,  2012;  Schaller  &  Puppe,  2021),  хоча  деякі  технології 

спроможні збільшити його доступність з ґрунту, зокрема в результаті підпалів 

(Haynes,  2019),  використання  кремнієвмісних  добрив  (Ehrenberg,  1854)  або 

вапнування (Savant et al., 1996).  

У  глобальному  масштабі  близько  35%  Si  накопичується  у 

сільськогосподарській  продукції,  і  ця  цифра  буде  збільшуватися  з 

нарощуванням виробничих потужностей упродовж наступних десятиліть. На 

противагу  природним  екосистемам,  в  яких  великі  об’єми  Si  надходять  з 

опадом,  щорічні  його  втрати  в  агроценозах  не  компенсуються.  При  цьому, 

цілеспрямоване  управління  циклом  кремнію  за  рахунок  використання 

кремнієвмісних  добрив  і  рослинних  решток  може  бути  багатообіцяючою 

стратегією  як  для  запобігання  втрат  Si  в  системі  рослина‐ґрунт,  так  і  для 
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підвищення стійкості сільськогосподарських культур до стрес‐факторів різної 

етіології,  а  також  посилення  секвестрації  вуглецю  в  біогеоценозах  для 

пом’якшення  змін  клімату  (Li  et  al.,  2018).  Депонування  вуглецю  в  ґрунтах 

сільськогосподарських угідь може бути забезпечене за рахунок регулювання 

вивітрювання  (внесення  кремнієвмісних мінералів),  органічної  стабілізації  С 

(використання кремнієвмісних добрив і біовугілля) та фітолітокислювального 

вуглецю (повернення рослинних решток). 

Доведено, що підвищення рН ґрунту через періодичне вапнування збіль‐

шує розчинність аморфного кремнезему та є основним фактором зростання 

поглинання Si рослинами (Puppe et al., 2021). Водночас, доступність кремнію 

визначається  складною  взаємодією  різних  чинників,  тому  позитивна  роль 

вапнування на рухливість Si потребує більш детальних досліджень. 

Довготривалі  польові  експерименти  засвідчили,  що  близько  40‐60% 

кремнію  можна  заощадити  в  ґрунті  за  рахунок  внесення  трансформованих 

рослинних  решток  (Kaczorek  et  al.,  2019;  Puppe  et  al.,  2021).  Внесення 

рослинних відходів, особливо соломи, сприяє збільшенню вмісту фітолітів за 

умови  одночасного  додаткового  внесення  кремнієвмісних  добрив, 

перетворюється  на  багатообіцяючу  стратегію  для  відновлення  родючості 

ґрунтів  і  підвищення  стійкості  рослин  у  сучасних  реаліях  сільськогоспо‐

дарського виробництва. Внесення мінеральних добрив, а також надходжен‐

ня  органічної  речовини  при  трансформації  рослинних  решток  сприяє 

підвищенню  мобілізації  Si  в  ґрунті  та  призводить  до  його  накопичення  у 

біомасі рослин (Carey &Fulweiler, 2012). З’ясовано, що комбіноване добриво 

Si‐Р  збільшує  концентрацію  доступного  для  рослин  кремнію  і  забезпечує 

більш  високу  продуктивність  та  зростання  фітолітів  у  біомасі.  При  цьому, 

взаємодія Si‐Р у системі  ґрунт‐рослина обумовлена складними біохімічними 

процесами, які, на жаль, практично не вивчені (Ma et al., 1991).  
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Потребує  всебічного  дослідження  питання  узгодженості  між  погли‐

нанням Si рослинами,  їхнього філогенетичного положення з факторами дов‐

кілля (Prychid et al., 2003). Крім того, необхідно зауважити, що концентрація 

фітогенного  кремнезему  в  лісових  ґрунтах  залежить  від  обсягу  рослинних 

решток, які надходять в ґрунт, і втрати фітолітів через вирубку дерев, ерозію, 

переміщення і розчинення (Cornelis et al., 2010; Opfergelt et al., 2009; Maguire 

et  al.,  2017).  У  цьому  випадку  надходження  фітолітів  обумовлене  не  лише 

опадом,  але й  хімічним  складом    кореневих ексудатів  (Turpault  et  al.,  2018; 

Puppe &  Leue,  2018). Вирубка лісів,  ерозії  та пожежі призводять до великих 

втрат  Si,  зменшуючи  концентрацію  аморфного  кремнезему,  хоча  рослини 

здатні  активно  підвищувати  біодоступність  кремнію  в  результаті 

біовивітрювання (Hinsinger, 2001; Gattullo et al. 2016; Puppe, 2020.).  

Біодоступність  кремнію  в  ґрунті  контролюється  трьома  ключовими 

факторами: 1) концентрацією Si в ґрунтовому розчині; 2) запасами в твердій 

фазі  (педогенний,  біогенний,  адсорбований  або  з  добрив);  3)сорбційною 

спроможністю  ґрунту утримувати Si  (Savant et al.,  1996; Crusciol et al.,  2018). 

На даний час фактично не існує загальної стандартної процедури для оцінки 

доступного для рослин Si у ґрунтах, оскільки наявна інформація стосується ду‐

же  обмеженого  переліку  культур,  розглядається  з  позиції  різних  ґрунтово‐

кліматичних умов їхнього вирощування. Для отримання реальних відомостей 

щодо доступності Si в природних екосистемах і агроценозах необхідно отри‐

мати узагальнюючі відомості стосовно стану кремнію в ґрунтах (його концен‐

трація, кількість і якість твердих біогенних та педогенних фаз Si, збереження 

доступних  для  рослин  форм,  впливу  клімату  й  рослинності)  і  результати 

лабораторних та польових експериментів для виявлення факторів впливу на 

доступність Si у різних ґрунтах, баланс колооберту Si в системі рослина‐ґрунт. 

Через  багаточисленну  функціональну  роль  Si  та  переваги,  які  цей 

елемент  надає,  доречно  зауважити,  що  кремній  впливає  на  пристосування 
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рослин  до  стрес‐факторів,  міжвидової  взаємодії  рослина‐ґрунт  і  рослина‐

рослина,  а  отже    задіяний  у  структурно‐функціональну  організацію  біогео‐

ценоза  загалом.  Дані,  яким  чином  Si  впливає  на  міжвидову  конкуренцію 

фрагментарні, але не були дослідженими питання конкуренції за кремній між 

сільськогосподарськими культурами і бур’янами. 

Конкретних  доказів  того,  що  Si  виконує  важливу  роль  в  управлінні 

структурою екосистеми, а  також впливає на  її функціональне значення, досі 

немає.  Тому,  особливої  актуальності  набувають  міждисциплінарні  дослід‐

ження, пов’язані з розробкою стандартного протоколу для оцінки біодоступ‐

ності Si; з'ясування механізмів, які підвищують стійкість рослин  і визначення 

його  ролі  в  структурно‐функціональній  організації    екосистем  різного 

ієрархічного рівня. 

МАТЕРІАЛИ ТА МЕТОДИ 

Відбір  зразків  та  алелопатичний  аналіз  ґрунту.  Зразки  ґрунту 

відбирали  у  ювенільній,  генеративній  та  постгенеративній  фазах  рослин 

рижію,  гірчиці  та  ріпаку.  Контролем  слугував  ґрунт  за  межами  дослідних 

ділянок. 

Алелопатичний  аналіз  ґрунту  здійснювали методом  прямого  біотесту‐

вання з використанням проростків крес‐салату (Lepidium sativum L.) й амаран‐

ту (Amaranthus paniculatus L.) як тест‐об’єктів (Сучасні методи …, 2021). 

Алелопатичну активність  гідрофільних сполук  ґрунту вивчали методом 

біологічних  проб  за  допомогою  проростків  огірка  (Cucumis  sativus  L.)  як 

рослини‐акцептора (Сучасні методи …, 2021). Цитостатичну дію гідрофільних 

сполук  ґрунту  досліджували  шляхом  підрахунку  кількості  бічних  коренів 

проростків C. sativus (Сучасні методи…, 2021). 

Мікробіологічний  аналіз  ґрунту.  Мікробіологічні  дослідження 

здійснювали методом посіву ґрунтових суспензій у відповідних розведеннях 

на селективні агаризовані живильні середовища згідно загальноприйнятих у 
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мікробіології  методик  (Сучасні  методи  …,  2021;  Радченко  та  ін.,  2011; 

Андреюк  та  ін.,  2001).  Мікроміцети  враховували  на  середовищі  Чапека, 

актиноміцети – на крохмаль‐аміачному агарі (КАА), амоніфікатори – на м’ясо‐

пептонному  агарі  (МПА),  мікроорганізми,  що  споживають  переважно 

мінеральні сполуки азоту – на КАА.  

Біохімічний  аналіз  рослинного  матеріалу.  Вміст  фотосинтетичних 

пігментів  (хлорофілів  і  каротиноїдів)  в  листках  рослин  визначали 

спектрофотометрично на приладі Specord 2000 (Analitic Jena, 2003 р.). Виміри 

проводили  за  довжини  хвиль  644 нм  (хлорофіл  а),  662 нм  (хлорофіл  b)  і 

440 нм  (каротиноїди)  відповідно  (Wellburn,  1994).  Екстракцію  пігментів 

здійснювали  DMCO  (диметилсульфоксид)  протягом  4  годин  у  термостаті  за 

температури 70°C згідно методики (Hiscox & Israelstam, 1979). 

Флавоноїди  екстрагували  70%‐ним  етанолом  зі  свіжозібраних  листків 

упродовж  доби  в  холодильнику.  Кількісний  вміст  флавоноїдів  визначали 

спектрофотометрично  на  приладі  Specord  2000  (Analitic  Jena,  2003  р.)  за 

довжини хвилі 410 нм, застосовуючи якісну реакцію з 2%‐ним розчином AlCl3 

у  98%‐ному  етанолі  (Сучасні  методи…,  2021).  Антоціани  екстрагували  96%‐

ним  етиловим  спиртом  з  1%‐ним  вмістом  хлористо‐водневої  кислоти. 

Кількісний  вміст  визначали  спектрофотометрично  на  приладі  Specord  2000 

(Analitic  Jena,  2003  р.)  за  довжини  хвилі  546  нм  (Сучасні  методи  …,  2021). 

Таніни  екстрагували  киплячою  дистильованою  водою  з  наступним 

настоюванням на водяній бані протягом години. Кількісний вміст визначали 

шляхом  титрування  0,1%  розчином  перманганату  калію  суміші 

відфільтрованого екстракту з індигокарміном (Мардар та ін., 2008). 

Для  аналізу  ендогенних  брасиностероїдів  проводили  екстракцію  з 

рослинних зразків у два етапи: перший етилацетат (3 рази по 5 мл) з водної 

витяжки  тканин  (1  г  тканини  +  5  мл  екстракції  розчину).  Фракцію  з 

етилацетатом упарювали  у  вакуумі  та екстрагували  залишок циклогексаном 
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(5мл). Другий етап екстракції проводили сумішшю етанол:вода (4:1). Екстракт 

етанолу  упарювали  у  вакуумі,  залишок  розчиняли  в  невеликій  кількості 

етилацетату. Виміри вмісту брасинолідів проводили на спектрофотометрі при 

довжині хвилі 450 нм (Kravets et al., 2011). 

Біохімічний  аналіз  ґрунту.  Зразки  ґрунту  висушували  за  кімнатної 

температури, просіювали через 2 мм сито. Тритерпеноїди та сапоніни екстра‐

гували метанолом. Екстракт фільтрували, випарювали. Сухий залишок розчи‐

няли у дихлорметані. Кількісний вміст тритерпеноїдів та сапонінів визначали 

із  застосуванням  кольорової  реакції  Саньє:  з  ваніліновим  реактивом  та 

концентрованою сульфатною кислотою на спектрофотометрі Specord 2000, за 

довжини хвилі 577 та 515 нм, відповідно (Сучасні методи …, 2021). 

Фенольні речовини виділяли з ґрунту методом іонного обміну (десорб‐

ції), використовуючи іонообмінник КУ‐2‐8 (Н+) як модель кореневої системи з 

розчинюючою  і  поглинальною  здатністю  по  відношенню  до  рухливих 

органічних сполук (Сучасні методи …, 2021).  

Агрохімічний аналіз  ґрунту та рослинного матеріалу. Окисно‐від‐

новний  потенціал  (ОВП,  редокс‐потенціал)  визначали  потенціометричним 

методом  за  допомогою  приладу  pH/ORP Meter  HI  2211  (Hanna  Instruments, 

2005 p.) в суспензії, яка моделює ґрунтовий розчин при співвідношенні ґрунту 

до дистильованої води 1:1 (Fiedler et al., 2007; Labuda, Vetchinnikov, 2011).  

Біогенні  елементи,  які  екстрагували  з  рослинних  тканин  та  ґрунту, 

аналізували за відповідною методикою (Сучасні методи …, 2021). Кількісний 

вміст  визначали  на  оптичному  емісійному  спектрометрі  з  індуковано 

зв’язаною плазмою ICAP 6300 DUO.   

Результати  та  їх  обговорення.  У  2024  році  досліджували  післядію 

внесення  кремнієвмісного  добрива  попереднього  року  на  структурно‐

функціональну  організацію  ґрунтової  екосистеми  та  фізіолого‐біохімічні 

процеси у рослин рижію посівного  с. Перемога  (Camelina  sativa  (L.)  Crantz  f. 
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annua, cv. Peremoha),  гірчиці ефіопської  (Brassica carinata A. Braun) та ріпаку 

ярого с. з. Рімал (Brassica napus f. annua D.S., cv. s. Rimal).    

Візуальна  оцінка  післядії  внесення  кремнієвмісного  добрива  на 

морфометричні  показники  досліджених  капустяних  видів  показала,  що 

рослини  на  дослідних  ділянках  раніше  сходили  та  активніше  відростали 

порівняно  з  контрольними  ділянками  на  початку  вегетації  (рис. 8. 1). 

Спостереження протягом генеративного періоду розвитку виявили, що на тлі 

післядії  добрива  капустяні  культури  розвивали  більш  високу  надземну 

частину з крупнішими листками та квітконосами  (рис. 8. 2). Це свідчило про 

стимулювання  фотосинтетичної  продуктивності  у  рослин  на  оброблених 

ділянках.  Порівняння  насіннєвої  продуктивності  у  рослин  на  тлі  післядії 

добрива,  а  також  у  контролі  виявило  позитивний  ефект  від  внесення 

кремнієвмісного добрива (рис. 8. 3). 

Окреслені вище візуальні спостереження були підкріплені результатами 

фізіолого‐біохімічних  досліджень  вмісту  фотосинтетичних  пігментів 

(хлорофілу а,  b  та  каротиноїдів)  в  листках  досліджених  капустяних  культур. 

Зокрема  встановлено,  що  тенденція  стимулювання  кремнієвмісним 

добривом  концентрації  хлорофілів  а,  b,  та  каротиноїдів,  яку  спостерігали  в 

2023 році, збереглася і в 2024 році (табл. 8. 1). 

Кількість  цих  пігментів  є  показником  потенційної  продуктивності 

рослин та їхньої здатності формувати біологічний урожай. Мінімальний вміст 

фотосинтетичних пігментів у листках досліджених рослин спостерігався в фазі 

ювенільного  розвитку.  Максимальний  –  у  генеративній  фазі.  Найбільшу 

чутливість  до  впливу  післядії  кремнієвмісного  добрива  на фотосинтетичний 

апарат проявив ріпак, найменшу – гірчиця. 
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Рис. 8. 1. Вплив післядії кремнієвмісного добрива на ріст рослин рижію (1,2), 
гірчиці (3, 4) та ріпаку (5,6), ювенільна фаза онтогенезу. 1, 3, 5 – добриво 

вносилося у 2023 р. 2, 4, 6 – добриво не вносилося. 
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Рис. 8. 2. Вплив післядії кремнієвмісного добрива на ріст  гірчиці (1, 2) та 

ріпаку (3, 4) у фазі цвітіння. 1,3– добриво вносилося у 2023 р.  
2,4 – добриво не вносилося. 
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Рис. 8. 3. Вплив післядії кремнієвмісного добрива на формування насіння 
рижію (1), гірчиці (2) та ріпаку (3). 1, 2, 3 – добриво вносилося у 2023 р. К – 

добриво не вносилося. 
 
 

Таблиця 8. 1  
Вміст фотосинтетичних пігментів у листках рижію,  

гірчиці та ріпаку на тлі післядії кремнієвмісного добрива і в контролі, мг/г 
сухої маси (середнє арифметичне ± стандартна похибка) 

 
 
Куль‐
тура 

Фаза 
онтогенезу 

Хлорофіл а  Хлорофіл b  Каротиноїди 

контроль  добриво кон‐
троль 

добриво  контроль  добриво 

Рижій  Ювенільна  0,68±0,02  0,84±0,01  0,24±0,02  0,26±0,01  0,11±0,01  0,13±0,01 
Генеративна  1,15±0,03  1,31±0,02  0,29±0,01  0,33±0,01  0,22±0,01  0,25±0,01 

Гірчиця  Ювенільна  0,78±0,03  0,85±0,03  0,26±0,01  0,29±0,01  0,15±0,02  0,17±0,01 
Генеративна  1,21±0,02  1,28±0,01  0,31±0,02  0,35±0,01  0,28±0,01  0,31±0,02 

Ріпак  Ювенільна  0,85±0,03  0,96±0,02  0,33±0,02  0,38±0,02  0,27±0,01  0,29±0,01 
Генеративна  1,25±0,02  1,44±0,01  0,45±0,01  0,52±0,02  0,44±0,02  0,51±0,02 

 
Результати  аналізу  вмісту  вторинних  метаболітів  (флавоноїдів, 

антоціанів,  танінів)  у  листках  дослідних  видів  у  2024  році  показали,  що 

післядія  внесення  кремнієвмісних  добрив  відбилась  і  на  цих  показниках 
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(табл.  8.2).  Проте,  на  відміну  від  2023  року,  добрива  стимулювали  синтез 

флавоноїдів  і танінів, особливо у фазі ювенільного розвитку. Натомість вміст 

антоціанів  був  нижчим  за  2023  рік,  тож  достовірно  не  відрізнявся  між 

дослідними та контрольними варіантами.  

Таблиця 8. 2  
Вміст флавоноїдів (мг/г сух. маси), антоціанів (% до сух. маси) та танінів (% до 
сух. маси) у листках рижію, гірчиці та ріпаку на тлі післядії кремнієвмісних 

добрив (середнє арифметичне ± стандартна похибка) 
 

 
Культура 

 
Період 

онтогенезу 

Флавоноїди Антоціани Таніни

контроль  добриво  контроль добриво контроль  добри‐
во 

Рижій  Ювенільна  12,6±0,21  18,7±0,24  0,09±0,01  0,08±0,01  12,2±1,1  10,0±0,6 
Генеративна  20,8±0,27  25,0±0,21  0,11±0,02  0,09±0,01  10,2±0,8  9,4±0,4 

Гірчиця  Ювенільна  21,2±0,28  26,9±0,24  0,06±0,01  0,07±0,02  16,4±0,9  16,3±0,7 
Генеративна  27,1±0,27  34,4±0,29  0,08±0,01  0,08±0,01  12,3±0,6  10,6±0,8 

Ріпак  Ювенільна  15,9±0,26  17,0±0,20  0,05±0,01  0,06±0,02  19,1±0,8  10,1±0,6 
Генеративна  20,3±0,24  17,9±0,22  0,04±0,01  0,04±0,01  14,3±0,9  9,6±0,8 

 

Вміст флавоноїдів є одним із найбільш чутливих біохімічних показників 

до  факторів  оточуючого  середовища.  Крім  того,  цей  показник  корелює  з 

основними  фізіологічними  процесами,  такими  як  фотосинтез,  мінеральне 

живлення,  обмін  білків  та  вуглеводнів.  У  зв`язку  з  цим  вміст  флавоноїдів 

вважається  маркером  успішності  акліматизації  та  стійкості  рослин  до 

несприятливих  факторів  середовища  (Калита,  2013).  Зростання  вмісту 

флавоноїдів й фотосинтетичних пігментів свідчить про підвищення системної 

стійкості  досліджених  капустяних  культур  на  тлі  післядії  кремнієвмісного 

добрива.  Цей  висновок  підтверджує  зниження  вмісту  антоціанів  у  листках 

дослідних рослин порівняно з контролем (Chalker‐Scott, 1999). 

Таніни також беруть участь у захисних реакціях рослин до біотичного та 

абіотичного стресів, а також регулюють ріст і розвиток у рослин (Григорюк & 

Нестерова,  2017).  Механізм  їхньої  дії  на  рослинний  організм  остаточно  не 

з’ясований,  проте  відомо, що  вони можуть  гальмувати  розпад  ІОК,  а  також 
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виступати  у  ролі  антагоністів  та  регуляторів  гіберелінів  (Григорюк  & 

Нестерова, 2017). Сезонна динаміка вмісту танінів в листках рижію, гірчиці й 

ріпаку  була  схожою  і  характеризувалась  максимумом  у  ювенільній  фазі,  з 

наступним зниженням у  генеративній фазі. Таку тенденцію можна пояснити 

фенологічними  змінами,  пов`язаними  зі  зниженням  інтенсивності  ростових 

процесів  та  активізацією  синтезу  гормонів  гіберелінів.  Післядія 

кремнієвмісного  добрива  проявлялась  протягом  2024  року  в  суттєвому 

зниженні  вмісту  танінів  у  листках  досліджених  капустяних  культур.  Слід 

зазначити, що подібну тенденцію спостерігали у 2023 році. Суттєве зниження 

вмісту  танінів  у  листках  рослин  на  тлі  післядії  кремнієвмісного  добрива 

підтверджує  зниження  напруженості  стресового  стану  і  більш  активне 

протікання ростових процесів. 

Брасиностероїди  (BR)  —  це  клас  полігідроксильованих  стероїдних 

рослинних  гормонів,  що  беруть  участь  у  широкому  діапазоні  фізіологічних, 

біохімічних  та молекулярних реакцій рослин,  таких  як проростання насіння, 

поділ  і  подовження  клітин,  диференціація  судин,  морфогенез,  фотосинтез, 

активація ферментів  і  старіння. Вміст брасиностероїдів  у листках  та  зелених 

плодах  гірчиці,  ріпаку  та рижію визначали у постгенеративній фазі. Післядія 

кремнієвмісного  добрива  у  2024  році  виявилась  у  зростанні  вмісту  BR  у 

листках  (різницю  розраховували  за  формулою  ΔBR  =  ((BRSi  – 

BRCntrl)/BRCntrl)*100%). Найбільше стимулювання зафіксовано у листках рослин 

та зелених плодах рижію, а найнижче – у гірчиці (табл. 8.3). Варто відмітити, 

що окреслена тенденція співпадає результатами, які спостерігали у 2023 році. 

Зростання  вмісту  маркерів  системної  стійкості  рослин,  таких  як 

брасиностероїди  і  флавоноїди  –  на  тлі  післядії  кремнієвмісного  добрива  – 

свідчить  про  індуковану  кремнієм  резистентність  культурних  рослин  до 

неспрятливих умов середовища. 
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Таблиця 8. 3  
Вміст брасиностероїдів у листках (нг/г сухої речовини) протягом 
генеративного періоду онтогенезу рослин рижію, гірчиці та ріпаку 

 
Культура  Добриво  Контроль ΔBR, % від К

Рижій  429,53±6,31  387,73±6,43  10,79±0,19 
Гірчиця  417,34±7,39  397,16±7,52  5,09±0,07 
Ріпак  383,18±7,51  357,55±6,79  7,22±0,13 

 

Аналіз  ґрунту  ризосфери  на  дослідних  ділянках  на  початковому  етапі  

розвитку  рослин  засвідчив  більш  високий  рівень  біогенних  елементів  у 

ґрунтовому розчині на тлі післядії кремнієвмісного добрива (табл. 8.4).  

Таблиця 8.4  
Вплив післядії кремнієвмісного добрива на розподіл  

макро‐ і мікроелементів у ґрунті протягом ювенільного періоду онтогенезу 
рослин рижію, гірчиці та ріпаку, мг/кг 

Елемент  Культура  Конт‐
роль 

НІР 
рижій  гірчиця  ріпак 

добриво  К  добриво  К  добриво  К 
Ca  13990  10100  13770  11010  11120  10015  11130  106,4 
Mg  3556  3082  3816  1576  4235  2451  1514  17,2 
Fe  17760  21580  19670  21920  18840  38830  19590  188,3 
K  7096  6150  7322  6709  9126  6756  7322  74,4 
P  42,6  28,3  53,9  33,6  30,7  25,1  24,2  4,2 
S  761,5  615,0  775,1  720,3  702,6  458,1  705,4  6,5 
Mn  141,5  168,3  151,7  170,7  167,3  298,5  160,2  1,8 
Si  1399  1106  1790  1439  1240  1096  1027  1,7 
Zn  21,9  17,1  20,3  19,2  18,4  11,7  17,9  0,6 
Cu  12,8  9,5  13,1  12,3  12,7  6,8  9,2  0,8 
B  1,08  0  0,27  0  0,51  0  0,27  0,1 
Co  3,1  2,5  3,0  2,4  2,9  1,8  2,2  0,3 

Примітка: К – без внесення добрива. НІР – найменш істотна різниця 

 

Зокрема,  зростали  концентрації  Са,  Mg,  P,  Cu,  Zn,  Co,  Si,  B,  S.  Тоді  як 

концентрація  біодоступних  катіонів  токсичних  металів  Al,  Fe,  Cr,  Cd,  Ti,  Sr 

зменшувалася  (табл. 8.5). 
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Таблиця 8. 5  
Вплив післядії кремнієвмісного добрива на вміст 

 катіонів металів у ґрунті протягом ювенільного періоду онтогенезу рослин 
рижію, гірчиці та ріпаку, мг/кг 

Еле‐
мент 

Культура  Конт‐
роль 

НІР 
рижій  гірчиця  ріпак 

Добриво  К  Добриво К  Добриво  К 
Al  16020  17300  16710  18600  17390  30670  17960  154,3 
Cd  0,93  1,25  0,74  1,68  0,42  0,85  1,04  0,1 
Cr  12,9  13,8  13,5  14,7  14,4  25,9  14,2  0,3 
Na  634,7  703,6  665,3  736,1  699,5  1322,0  795,2  6,4 
Ti  236,9  275,1  237,2  311,4  274,2  435,8  327,5  3,4 
Sr  42,1  50,5  49,4  52,8  39,9  1,6  43,7  0,3 

Примітка: К – без внесення добрива. НІР – найменша істотна різниця 
 

Заслуговують на увагу результати щодо суттєвого зростання концентрації 

катіонів кремнію в ґрунті ризосфери оброблених ділянок, в середньому в 1,2‐

1,4 рази,  порівняно  з  необробленими.  Отримана  залежність  свідчить  про 

формування пулу аморфного кремнезему в ґрунті ризосфери рослин рижію, 

гірчиці  та  ріпаку.  Аморфний  кремнезем  відомий  своєю  гідрофільністю  та 

високою  сорбційною  ємністю,  особливо  до  мікроорганізмів,  білків,  катіонів 

металів,  а  також  низки  високомолекулярних  та  низькомолекулярних 

органічних  речовин,  зокрема фенольних  сполук,  які  відзначаються  високим 

алелопатичним  потенціалом  (Носач  &  Гнатишин,  2003).  Аморфний 

кремнезем у ґрунті ризосфери перешкоджає вимиванню біогенних елементів 

протягом  холодного  періоду  року,  створює  сприятливе  середовище  для 

розвитку агрономічно‐корисної мікрофлори та мікрофауни.  

Найвищий  вміст  аморфного  кремнезему  зареєстровано  у  ґрунті 

ризосфери гірчиці на тлі післядії кремнієвмісного добрива, найменший – під 

ріпаком. Це може бути пов’язано з підвищенням активності лакази і швидкої 

деструкцією  лігніновмісних  рослинних  решток,  про  що  свідчить  зростання 

пулу розчинних органічних речовин у ґрунті під ріпаком (табл. 8.6).  

 
Таблиця 8. 6 
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Вплив післядії кремнієвмісного добрива на вміст лабільних форм Гумусу в 
ґрунті та активність лакази протягом ювенільного періоду онтогенезу рослин 

рижію, гірчиці та ріпаку, мг/кг 
Культура  Варіант  Лабільні форми Гумусу, %  Активність лакази, mU/г 

ґрунту 
Рижій  Добриво  6,2  111,63 

К  5,1  104,71 
Гірчиця  Добриво  5,0  115,32 

К  4,8  103,87 
Ріпак  Добриво  6,5  127,53 

К  4,2  107,55 
Контроль  5,0  101,62 

Примітка: К – без внесення добрива 

Слід зазначити, що вміст аморфного кремнезему негативно корелював із 

вмістом  біодоступного  заліза,  оскільки  останній  задіяний  у  формуванні 

аморфного кремнезему, втрачаючи при цьому свою біодоступність. 

Зростання  вмісту  кремнію  в  ґрунті  з‐під  рижію  і  гірчиці  супроводжу‐

валося  підвищенням  концентрації  біодоступних  кальцію  і  фосфору  в  1,3‐1,6 

рази  (див.  табл.  8.4).  Крім  того,  на  тлі  післядії  кремнієвмісного  добрива 

спостерігається  зростання  показників  рН,  що  також  може  свідчити  про 

формування фітолітів, які оптимізують структурно‐функціональну організацію 

грунтової  екосистеми  і  позитивно  впливають  на  стійкість  рослин  до  стрес‐

факторів, у першу чергу, посухи (табл. 8. 7).  

Таблиця 8. 7 
Вплив післядії кремнієвмісного добрива на показники рН, електропровідності 

та концентрації НСО3 у ґрунті протягом ювенільної фази розвитку рослин 
рижію, гірчиці та ріпаку, мг/кг 

Культура  Варіант 
досліду 

рН сол. 
 

НСО3, мг‐екв./л 

H2O 
Електропровідність, 

µS/cm 
Рижій  Добриво  7,10  0,31  215 

К  6,84  042  183 
Гірчиця  Добриво  7,15  0,28  192 

К  6,78  0,41  158 
Ріпак  Добриво  7,05  0,24  169 

К  6,80  0,40  144 
Контроль  6,79  0,42  197 
НІР  0,12  0,02  16,44 

Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
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Підтвердженням цьому  є результати  з  оцінювання вмісту  елементів мі‐

нерального живлення в рослинах протягом генеративного періоду (табл. 8.8). 

Таблиця 8. 8  
Вплив післядії кремнієвмісного добрива на вміст 

 біогенних елементів в листках рижію, гірчиці та ріпаку протягом генеративної 
фази розвитку рослин, мг/кг 

Елемент  Культура  НІР 
рижій  гірчиця  ріпак 

добриво  К  добриво  К  добриво  К 
Ca  22910  21280  34980  27180  34920  30156  204,3 

Mg  2159  2021  2912  2175  3507  3178  28,5 

Fe  396  323  331  284  404  270  3,4 

K  22920  21000  27000  17300  21352  20091  188,4 

P  19,3  17,8  18,9  17,3  31,5  24,9  0,3 

S  6242  5944  5808  4588  7695  7405  39,4 

Mn  19,0  17,8  27,2  17,1  36,3  29,4  35,5 

Si  637  558  522  403  879  536  86,2 

Zn  27,8  25,1  25,3  22,8  33,8  20,9  1,3 

Cu  13,9  12,8  10,2  9,6  8,9  8,0  0,4 

B  22,7  21,3  22,1  19,8  27,8  20,1  1,8 

Co  0,40  0,32  0,38  0,30  0,43  0,37  0,01 

       Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
 

За  присутності  кремнієвмісного  добрива  суттєво  зростає  надходження 

макро‐ і мікроелементів, зокрема: Ca, Mg, P, S у 1,1‐1,3 рази; K, Si, Zn, Mn і Fe 

–  в  середньому  у  1,1‐1,6  рази.  Отримана  залежність,  з  одного  боку, 

пояснюється  позитивним  впливом  біогенного  кремнію  на  збалансованість 

мінерального  режиму  ґрунту,  з  іншого  –  зниженням  процесів 

ґумусоутворення  та формуванням  стабільних форм  Гумусу,  про що  свідчить 

зменшення активності лакази та вмісту лабільних форм Гумусу (табл. 8.9). 
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Таблиця 8. 9  
Вплив післядії кремнієвмісного добрива  на вміст лабільних  

форм Гумусу в ґрунті та активність лакази протягом генеративної фази 
розвитку рослин рижію, гірчиці та ріпаку, мг/кг 

 
Культура  Варіант   Лабільні форми 

Гумусу,% 
Активність лакази, 

mU/г ґрунту 
Рижій  Добриво  5,7  105,74 

К  4,8  101,56 
Гірчиця  Добриво  5,1 107,96 

К  4,3  98,55 
Ріпак  Добриво  5,9  119,35 

К  4,2  101,33 
Контроль  4,1  93,62 

        Примітка: К– без внесення добрива. НІР – найменш істотна різниця 
 

Отримана  залежність  пов’язана  зі  стабілізацією  агрофізичних, 

агрохімічних  і  біологічних  показників  ґрунту,  в  результаті  набуття  системою 

врівноваженого  стану.  Необхідно  зазначити,  що  зберігається  минулорічна 

тенденція щодо  зростання  рівня НСО3  у  генеративній фазі,  яке  пояснюється 

підвищенням температури повітря (табл. 8. 10). 

Таблиця 8. 10 
Вплив післядії кремнієвмісного добрива на показники рН,  

електропровідності та концентрації НСО3 у ґрунті протягом генеративної фази 
розвитку рослин рижію, гірчиці та ріпаку, мг/кг 

 
Культура  Варіант   рН сол.

 
НСО3, мг‐екв./л 

H2O 
Електропровідність, 

µS/cm 
Рижій  Добриво  7,05 0,41 218 

К  6,82  0,48  193 
Гірчиця  Добриво  7,09  0,39  175 

К  6,76  0,48  146 
Ріпак  Добриво  7,0  0,32  165 

К  6,81  0,44  152 
Контроль  6,80 0,43 164 

НІР  0,2  0,07  2,9 
Примітка:К – без внесення добрива. НІР – найменш істотна різниця 
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Певні  відмінності  простежуються  також  у  розподілі  макро‐  та 

мікроелементів  у  ґрунті  протягом  генеративного  періоду  онтогенезу 

досліджених рослин (табл. 8. 11).  

Таблиця 8. 11 
Вплив післядії кремнієвмісного добрива  на розподіл макро‐ і 

 мікроелементів у ґрунті протягом генеративної фази розвитку рослин, мг/кг 
 

 
Елемент 

Культура   
Кон‐
троль 

 
НІР рижій  гірчиця  ріпак 

добриво К  добриво К  добриво К 
Ca  7208  6082  15680  5070  5712  1557  4159  57,4 
Mg  1962  1792  4684  1718  1865  1658  1506  26,9 
Fe  12130  11710  27930  10970  12090  10960  11360  123,5 
K  2581  2116  6024  2081  2230  2015  1895  22,8 
P  28,5  25,3  26,4  15,8  34,0  26,6  46,4  0,4 
S  674,3  653,2  428,4  382,7  695,5  644,3  522,0  8,6 
Mn  198,0  173,6  483,7  180,9  203,7  173,3  169,8  2,5 
Si  1058  951  856  296  1023  906  724  9,8 
Cu  15,1  13,4  13,1  7,7  15,2  12,3  10,7  0,8 
B  12,8  7,5  7,7  4,8  6,9  5,6  5,3  0,1 
Co  4,1  3,8  3,7  2,1  3,9  3,5  3,0  0,1 

Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
 

У порівнянні з ювенільною фазою розвитку рослин у ґрунті зменшується 

вміст  Ca,  K,  P,  Si,  S,  Mg,  хоча  зберігається  тенденція  щодо  більш  високої 

концентрації  у  варіантах  за  внесення  кремнієвмісного  добрива.  Для  В, Mn, 

Zn,  Со,  Cu  простежується  протилежна  закономірність,  яка  пояснюється 

набуттям  ґрунтовою  екосистемою  керованих  ознак  за  рахунок 

збалансованості  хімічного  складу.  Підтвердженням  цьому  слугує  зниження 

вмісту катіонів токсичних металів у ґрунті (табл. 8.12). Отже, формування пулу 

аморфного  кремнезему  в  ґрунті  дозволяє  певним  чином  спрямовувати 

колообіг  біогенних  елементів  в  біогеоценозі,  і  таким  чином  керувати 

інформаційно‐ресурсним потенціалом останнього. 
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Таблиця 8. 12 
Вплив післядії кремнієвмісного добрива на вміст  

важких металів у ґрунті у генеративній фазі рослин, мг/кг 
 
Елемент  Культура  Контроль  НІР 

рижій  гірчиця  ріпак 

добриво  К  добриво  К  добриво  К 
Al  10960  11780  11030  24720  11025  14170  9527  98,9 
Cd  0,53  0,84  0,10  0,50  0,46  0,59  0,52  0,1 
Cr  16,2  17,6  16,1  41,7  16,3  26,5  14,1  1,2 
Na  694,9  721,8  715,3  1814,7  692,6  824,4  547,1  8,2 
Ti  270,4  281,5  274,7  679,2  271,2  315,6  217,5  7,4 
Sr  31,3  37,4  33,7  84,2  30,4  38,9  31,1  1,4 

Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
 

Протягом  постгенеративного  періоду  розвитку  дослідних  рослин 

спостерігали суттєве зростання Са, Mg і Р в листках ріпаку, рижію та гірчиці на 

тлі  післядії  кремнієвмісного  добрива  порівняно  з  контрольними  ділянками 

(табл. 8. 13).  

Таблиця 8. 13 
Вплив післядії кремнієвмісного добрива на вміст біогенних елементів в 

рослинах протягом постгенеративного періоду розвитку, мг/кг 
 

Елемент  Культура   
НІР рижій  гірчиця  ріпак 

добриво  К  добриво  К  добриво  К 
Ca  11767  10460  14290  12830  17870  16750  158,4 
Mg  1503  1399  1724  1470  2248  1631  33,3 
Fe  392,7  438,2  192,9  326,7  81,5  99,4  9,8 
K  16503  18566  1787  18210  11370  14890  176,4 
P  89,6  71,9  111,1  86,3  138,7  108,9  8,4 
S  6135  6257  8723  14000  7061  8179  124,3 
Mn  17,9  14,8  16,1  11,3  12,3  10,8  0,1 
Si  976  525  793  263  527  258  6,7 
Zn  30,9  27,5  33,2  30,1  31,3  26,5  0,4 
Cu  12,0  9,8  9,1  8,1  9,8  8,4  0,9 
B  26,1  19,2  18,1  16,0  18,9  15,3  0,3 
Co  0,65  0,52  0,42  0,37  0,41  0,35  0,1 

Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
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Таким  чином,  наприкінці  вегетації,  на  тлі  післядії  кремнієвмісного 

добрива  капустяні  культури  акумулювали  у  фітомасі  такі  важливі 

макроелементи, як Са, Mg і Р, депонуючи їх таким чином у ґрунті ризосфери. 

Крім  того,  у  ґрунті  ризосфери  на  тлі  кремнієвмісного  добрива  істотно 

зростала  активність  лакази  та  вміст  органічного  вуглецю  (табл. 8. 14). 

Відповідно знижувався вміст мінерального вуглецю, який є джерелом емісії 

вуглекислого газу в атмосферу (табл. 8. 15).  

Таблиця 8. 14 
Вплив післядії кремнієвмісного добрива на вміст лабільних форм Гумусу в 

ґрунті та активність лакази у постгенеративній фазі рослин 
 

Культура  Варіант  Лабільні форми 
Гумусу, % 

Активність лакази, mU/г 
ґрунту 

Рижій  Добриво  5,4  93,54 
К  4,5  87,42 

Гірчиця  Добриво  4,7  99,31 
К  4,0  86,56 

Ріпак  Добриво  5,2  113,57 
К  3,9  88,73 

Контроль  3,1  84,65 

 
Таблиця 8. 15 

Вплив післядії кремнієвмісного добрива на показники рН, електропровідності 
та концентрації НСО3 у ґрунті у постгенеративній фазі рослин, мг/кг 

 
Культура  Варіант  рН сол. 

 
НСО3, мг‐екв./л 

H2O 
Електропровідність, 

µS/cm 
Рижій  Добриво  7,0  0,30  155 

К  6,80  0,33  116 
Гірчиця  Добриво  7,04  0,32  129 

К  6,78  0,35  109 
Ріпак  Добриво  6,9  0,33  141 

К  6,70  0,39  128 
Контроль  6,67  0,34  130 
НІР  0,17  0,03  2,9 
   Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
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Вміст сірки і заліза в рослинах ріпаку, гірчиці та рижію, навпаки зменшу‐

вався  на  тлі  післядії  кремнієвмісного добрива.  Зменшення надходження до 

рослин  заліза,  пов`язане  з  утриманням  цього  металу  аморфним  кремнезе‐

мом ґрунту внаслідок формування олігомерних зв’язків Si‐О‐Si. Зниження вміс‐

ту сірки у тканинах капустяних культур на тлі кремнієвмісного добрива супро‐

воджувалось  зростанням  вмісту  цього  елементу  у  ґрунті  ризосфери  і  може 

бути пов’язане зі зменшенням синтезу білку в кінці вегетаційного періоду.  

Протягом  постгенеративного  періоду  розвитку  капустяних  культур 

спостерігали незначне зниження активності лакази та вмісту лабільних форм 

Гумусу  порівняно  з  генеративним  та  ювенільним  періодами  (див.табл.  8.6, 

8.9  та 8.14). При цьому на  тлі післядії  внесення добрива,  сезонні коливання 

цих  показників  були менш вираженими. Це  свідчило  про  стабілізуючу  роль 

аморфного кремнезему в  ґрунтовій екосистемі. У зразках  ґрунту ризосфери, 

відібраних  протягом  постгенеративного  періоду  розвитку  рослин  рижію, 

ріпаку  та  гірчиці  простежується  зростання  концентрації  Ca,  Si,  Zn,  S,  K  та  Cu 

порівняно з попередньою фазою розвитку (табл. 8. 16).  

Таблиця 8. 16 
Вплив післядії кремнієвмісного добрива на розподіл макро‐ і мікроелементів 

у ґрунті у постгенеративній фазі рослин, мг/кг 
 
Елемент 

Культура   
Контроль 

 
НІР рижій  гірчиця  ріпак 

добриво  К  добриво  К  добриво  К 
Ca  10390  8051  7869  7159  8296  7344  5691  69,4 
Mg  1677  1546  1257  1086  1469  1248  1410  18,8 
Fe  6482  6592  4317  4561  5865  6441  6773  63,8 
K  2877  2753  2513  1884  2475  2384  2771  34,5 
P  17,8  17,0  15,9  10,1  18,7  15,0  26,6  0,9 
S  1000  935  995  693  958  927  906  9,8 
Mn  122,1  133,6  933  117,8  125,1  129,6  130,8  15,2 
Si  1122  1083  1018  644  998  917  696  12,4 
Zn  29,9  25,6  25,1  20,0  27,8  24,3  25,6  0,4 
Cu  17,3  16,8  14,9  11,3  15,8  13,5  14,2  0,2 
B  8,9  8,1  7,7  5,9  7,4  6,2  6,7  0,1 
Co  4,5  3,8  4,1  3,0  4,3  3,7  3,6  0,1 

Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
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Вміст  майже  всіх  мікроелементів,  окрім  заліза,  в  ґрунті  ризосфери 

досліджених  капустяних  видів  був  вищим  на  тлі  післядії  кремнієвмісного 

добрива  –  порівняно  з  контрольними  ділянками.  Отримана  залежність 

свідчить  про  кращі  сорбційні  властивості  цього  ґрунту,  що  створює 

сприятливіші  умови для наступних посівів  сільськогосподарських культур на 

цих  ділянках.  Таким  чином,  застосування  кремнієвмісних  добрив  сприяє 

врівноваженості ґрунтової екосистеми та її спроможності до самоорганізації – 

відповідно  до  правила  І. Пригожина.  Підтвердженням  цьому  є  також 

іммобілізація  катіонів  токсичних  металів  у  ґрунті  ризосфери  за  внесення 

кремнієвмісного добрива (табл. 8. 17).  

Таблиця 8. 17 
Вплив післядії кремнієвмісного добрива на  

вміст важких металів у ґрунті у постгенеративній фазі рослин, мг/кг 
 

Елемент  Культура  Контроль  НІР 
рижій  гірчиця  ріпак 

добриво  К  добриво  К  добриво  К 
Al  6035  6820  4872  6249  6183  6657  6479  65,8 
Cd  0,02  0,21  0,01  0,17  0,08  0,32  0,24  0,1 
Cr  8,3  12,8  8,6  12,0  10,5  14,8  12,2  0,2 
Na  60,9  72,4  43,2  62,1  47,7  55,9  63,4  0,6 
Ti  195,6  199,2  131,7  176,8  167,4  181,5  177,2  2,4 
Sr  15,7  17,2  10,5  14,9  13,8  15,0  12,6  0,1 

Примітка: К – без внесення добрива. НІР – найменш істотна різниця 
 

Зокрема,  слід  відмітити  факт  різкого  зниження  в  1,4‐4,1  рази  вмісту 

марганцю в ґрунті ризосфери у постгенеративний період, що також вказує на 

оптимізацію  окисно‐відновних  процесів  у  ґрунті  та  зменшення  його 

токсичності. 

Таким  чином,  отримані  результати  ілюструють  перспективність 

застосування аморфного кремнію для управлінні структурно‐функціональною 

організацією  ґрунтової екосистеми.   

Певні  відмінності  простежувались  також  при  аналізі  чисельності 

таксономічних  і  функціональних  груп мікроорганізмів  прикореневого  ґрунту 
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під культурами рижію, гірчиці та ріпаку. З’ясовано, що динаміка чисельності 

мікроміцетів  на  другий  рік  після  внесення  кремнієвих  добрив  не  виявила 

чіткої  залежності  між  варіантами  досліду  на  початку  розвитку  та  у 

генеративній фазі (рис. 8. 4).  

 
Рис. 8. 4. Чисельність мікроміцетів у ґрунті під культурами рижію, гірчиці та 
ріпаку за внесення кремнієвмісних сполук: 1 – рижій + кремній, 2 – рижій, 

контроль, 3 – гірчиця + кремній, 4 – гірчиця, контроль, 5 – ріпак + кремній, 6 – 
ріпак, контроль, 7 – контроль ґрунту 

 
 На тлі післядії кремнієвмісного добрива зростала кількість грибів у ґрунті 

ризосфери гірчиці та ріпаку на 12‐33 % порівняно з контрольними ділянками. 

При  цьому  спостерігали  певні  відмінності  сезонної  динаміки  чисельності 

мікроміцетів  –  залежно  від  виду  капустяної  культури.  Зокрема  у  рижію  та 

гірчиці максимальну чисельність грибів спостерігали протягом постгенератив‐

ного періоду,  а  в  ґрунті  під ріпаком – протягом  генеративного періоду. При 

цьому,  показники  грибів  у  контрольному варіанті  рижію у постгенеративній 

фазі  були  вищими  порівняно  з  дослідним  варіантом  в  1,4 рази  (рис.  8. 5). 

Минулого  року,  за  внесення  кремнієвмісних  добрив,  мікроміцетів  було 

більше  у  ґрунті  ризосфери  протягом  ювенільної  та  постгенеративної  фази 

розвитку рижію. Для гірчиці та ріпаку минулорічний тренд сезонної динаміки 

цього показника зберігся і впродовж 2024 року.  
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Рис. 8. 5. Ріст мікроміцетів на середовищі Чапека, ґрунт з‐під рижію протягом 

постгенеративного періоду розвитку: 1 – дослід (післядія за внесення 
кремнієвих добрив), 2 – контроль 

 
Чисельність мікроорганізмів групи актиноміцетів також зростала на тлі 

післядії  кремнієвмісних  добрив  порівняно  з  контрольними  ділянками 

(рис. 8. 6).  Особливо  це  було  властиве  для  рослин  гірчиці  упродовж  всього 

періоду розвитку, а для інших культур – протягом постгенеративного періоду 

(рис. 8. 6, 8. 7). Приріст до контролю складав 6,3 %, 72,7 % та 62,5 % відсотків 

відповідно. 

 
Рис. 8. 6. Чисельність актиноміцетів у ґрунті рижію, гірчиці та ріпаку за 

внесення кремнієвмісних добрив: 1 – рижій+кремній, 2 – рижій, контроль, 3 – 
гірчиця+кремній, 4– гірчиця, контроль, 5 – ріпак+кремній, 6 – ріпак, контроль, 

7 – контроль ґрунту 
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Рис. 8. 7. Ріст актиноміцетів та мікроорганізмів, що споживають мінеральний 
азот на середовищі КАА (крохмаль‐аміачний агар) у ґрунті з‐під гірчиці: 
постгенеративна фаза : 1 – дослід (післядія за внесення кремнієвмісних 

добрив), 2 – контроль 
 

Мікроорганізми  амоніфікатори  на  другий  рік  після  внесення  добрив 

розвивалися  краще  у  грунті  ризосфери  всіх  дослідних  культур  порівняно  з 

контрольними  ділянками  (рис.  8. 8),  найбільше  –  у  постгенеративній  фазі. 

Збільшення чисельності амоніфікаторів становило у зразках ґрунту ризосфери 

рижію, гірчиці та ріпаку 95 %, 34 %  та 63 % відповідно.  

Також  зростала  чисельність  гетерофрофних  мікроорганізмів  на  тлі 

післядії  кремнієвмісного  добрива  в  ґрунті  ризосфери  всіх  досліджених 

капустяних культур.  Зокрема, для  гірчиці  зростання  становило 13 %, 57 %  та 

34 %  упродовж  ювенільного,  генеративного  та  постгенеративного  періоду 

розвитку (рис. 8. 9). Це співпадає з тенденцією, яку спостерігали у 2023 році. 

 

1 2 
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Рис. 8. 8. Чисельність амоніфікаторів у ґрунті рижію, гірчиці та ріпаку за 

внесення кремнієвмісних добрив: 1 – рижій+кремній, 2 – рижій контроль,  
3 – гірчиця+кремній, 4 – гірчиця контроль, 5 – ріпак+кремній, 6 – ріпак 

контроль, 7 – контроль ґрунту 
 
 

 
Рис. 8. 9. Різниця  чисельності аммоніфікаторів на середовищі МПА (м'ясо‐
пептонний агар) у ґрунті під гірчицею ефіопською: (постгенеративна фаза):  
1 – дослід (післядія за внесення кремнієвмісних добрив), 2 – контроль 
 

Вплив  післядії  кремнієвмісного  добрива  на  чисельність  мікроорга‐

нізмів,  що  споживають  мінеральний  азот,  у  ґрунті  ризосфери  капустяних 

культур був істотним лише на початку вегетаційного періоду (рис. 8. 10), при 

цьому менша їх кількість спостерігалась саме на тлі післядії кремнієвмісного 

добрива.  
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Рис. 8. 10. Чисельність мікроорганізмів, що споживають мінеральний азот у 
прикореневому ґрунті рижію, гірчиці та ріпаку за внесення кремнієвмісних 
добрив: 1 – рижій+кремній, 2 – рижій контроль, 3 – гірчиця+кремній, 4 – 

гірчиця контроль, 5 – ріпак+кремній, 6 – ріпак контроль, 7 – контроль ґрунту 
  

У наступні періоди розвитку досліджених рослин чисельність цієї групи 

мікроорганізмів  майже  не  відрізнялась  між  дослідними  та  контрольними 

ділянками,  за  винятком  зразків  ґрунту,  відібраних  під  ріпаком  протягом 

постгенеративного  періоду  розвитку.  Останні  виявили  62%  зростання 

чисельності мікроорганізмів, що споживають мінеральний азот на тлі післядії 

кремнієвмісного добрива порівняно з контрольними ділянками. 

Коефіцієнт  мінералізації‐іммобілізації  дозволяє  оцінити  спрямованість 

мікробіологічних  процесів  у  грунті  за  співвідношенням  добрив  груп 

мікроорганізмів. На другий рік за внесення кремнієвмісних сполук значення 

коефіцієнтів мінералізації у дослідних зразках всіх культур упродовж вегетації 

виявились  меншими  за  контрольні,  що  свідчить  про  переважання  процесів 

накопичення органічних речовин (табл. 8. 18). Така тенденція була присутня і 

в минулорічних дослідженнях.  

 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Ювенільна Генеративна Постгенеративна

М
лн

 К
У

О
/ г

 с
ух

ог
о 

гр
ун

ту

Фази розвитку рослин

1

2

3

4

5

6

7



263 

Таблиця 8. 18 
Спрямованість мікробіологічних процесів мінералізації/іммобілізації 
органічної речовини ґрунту (коефіцієнт мінералізації‐іммобілізації) 

 
Культура  Фаза онтогенезу 

ювенільна  генеративна  постгенеративна 

Рижій + добриво  0,9  0,69  1,2 
Рижій, контроль  1,3  1,0  1,6 
Гірчиця + добриво  0,5  0,8  1,2 
Гірчиця, контроль  0,8  1,2  1,3 
Ріпак + добриво  0,9  1,2  0,8 
Ріпак, контроль  1,2  1,5  0,8 
Контроль грунту  0,9  1,5  0,9 

 

Таким чином, мікробіологічний моніторінг ґрунту ризосфери дослідних 

культур  за  внесення  кремнієвмісних  добрив  засвідчує  позитивний  вплив 

останніх на мікробіоценоз  та депонування органічної речовини як протягом 

першого,  так  і  протягом  наступного  року  вегетації.  Зокрема,  поліпшення 

розвитку  амоніфікаторів  та  зниження  коефіцієнту  мінералізації  засвідчує 

спрямованість  мікробіологічних  процесів  до  накопичення  органічної 

речовини  у  ґрунті.  Тоді  як  стимулювання  чисельності  актиноміцетів  на фоні 

зростання  активності  лакази  свідчить  про  активізацію  процесів 

гумусоутворення.  Порівнюючи  середовищеутворювальний  вплив 

досліджених видів капустяних культур слід відмітити гірчицю. Мікробіоценоз 

у ґрунті під гірчицею відрізнявся більшою чисельністю та різноманіттям. 

При  порівняльному  аналізі  післядії  кремнієвмісного  добрива  на 

алелопатичні  й  біохімічні  властивості  ґрунту  з‐під  олійних  культур  методом 

прямого  біотестування  ґрунту  на  проростках  Lepidium  sativum  виявлено 

позитивний вплив післядії кремнію на алелопатичний режим. Так, упродовж 

вегетаційного  сезону  спостерігалося  зниження  алелопатичної  активності 

ґрунту  на  тлі  кремнію на  27‐30 % для  рижію,  24‐30 % для  гірчиці  та  18‐28 % 
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для ріпаку порівняно з ґрунтовими зразками з‐під досліджуваних культур за 

його відсутності (рис. 8. 11).  

 
 

 
 

 
 

Рис. 8. 11. Алелопатична активність ґрунту з‐під рижію (А), гірчиці (Б) та ріпаку 
(В) (біотест – приріст коренів Lepidium sativum), % контролю: 1. – ґрунт + 
кремній; 2. – ґрунт без кремнію. Фази онтогенезу: І – ювенільна; ІІ – 

генеративна; ІІІ – постгенеративна. 
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Слід  відмітити,  що  за  умов  післядії  кремнієвмісного  добрива 

фітотоксичність  ґрунту  знижувалася  максимально  ефективно  в  ювенільну 

фазу, тоді як у перший рік його внесення – наприкінці вегетації. 

Водночас  оцінювання  алелопатичної  активності  ґрунту  за  допомогою 

тест‐рослин Amaranthus  paniculatus  показало  її  послаблення  на  15‐30%  при 

застосуванні  кремнієвмісного  добрива,  причому  найбільшою  мірою  для 

рижію  та  гірчиці  (рис.  8. 12).  Загалом,  аналіз  отриманих  результатів  дає 

підстави  стверджувати  про  поступове  зростання  фітотоксичності  ґрунту  до 

кінця  вегетації  як  при  наявності  кремнію,  так  і  за  його  відсутності,  що, 

очевидно,  можна  пояснити  акумуляцією  органічних  сполук  з 

алелопатичними властивостями у складі рослинних виділень та решток. 

Алелопатична  активність  гідрофільних  сполук  ґрунту  на  тлі  післядії 

кремнієвмісного  добрива  найбільше  знижувалася  у  генеративній  (22 %  для 

ріпаку) та постгенеративній (19‐22 % залежно від культури) фазах (рис. 8. 13). 

Схожа  тенденція  була  притаманна  і  для  першого  року  внесення 

кремнієвмісного добрива. 

Цитостатичні  властивості  гідрофільних  сполук  ґрунту  суттєво 

зменшувалися за внесення кремнію для  гірчиці  (на 15‐20 %)  та ріпаку  (на 7‐

18 %),  тоді  як  для  рижію  посилення  проліферації  було  незначним  (5‐10 %) 

(рис. 8. 14).  У  цілому,  проліферація  клітин  рослин‐акцепторів  знижувалася 

упродовж  вегетаційного  сезону,  але  найбільшою  мірою  –  за  відсутності 

кремнієвмісного добрива. 

Біохімічні  властивості  ґрунту  оцінювали  за  значеннями  редокс‐

потенціалу. Як у перший, так і на другий рік застосування кремнію у контролі 

(за  межами  дослідної  ділянки)  характер  процесів  був  помірно  відновним 

упродовж всього періоду вегетації (рис. 8. 15).  
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Рис. 8. 12. Алелопатична активність ґрунту з‐під рижію (А), гірчиці (Б) й ріпаку 
(В) (біотест – приріст коренів Amaranthus paniculatus), % контролю: 1. – ґрунт 
+ кремній; 2. – ґрунт без кремнію. Фази онтогенезу І – ювенільна фаза; ІІ – 

генеративна; ІІІ – постгенеративна 
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Рис. 8. 13. Алелопатична активність гідрофільних сполук ґрунту з‐під рижію 
(А), гірчиці (Б) й ріпаку (В) (біотест – приріст коренів Cucumis sativus), % 

контролю: 1. – ґрунт + кремній; 2. – ґрунт без кремнію. Фази онтогенезу: І – 
ювенільна; ІІ – генеративна; ІІІ – постгенеративна. 
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Рис. 8. 14. Цитостатична дія гідрофільних сполук ґрунту з‐під рижію (А), 
гірчиці (Б) й ріпаку (В) (біотест – кількість бічних коренів Cucumis sativus), % 
контролю: 1. – ґрунт + кремній; 2. – ґрунт без кремнію. Фази онтогенезу: І – 

ювенільна; ІІ – генеративна; ІІІ – постгенеративна 
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Рис. 8. 15. Значення окисно‐відновного потенціалу (ОВП) в ґрунті з‐під рижію 
(А), гірчиці (Б) й ріпаку (В), мВ: 1. – ґрунт + кремній; 2. – ґрунт без кремнію; 3. 

– контроль. Фази онтогенезу: І – ювенільна; ІІ – генеративна; ІІІ – 
постгенеративна 
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У  той  же  час,  за  умов  післядії  кремнієвмісного  добрива  та  за  його 

відсутності  на  ділянках  досліджуваних  олійних  культур,  характер  процесу 

змінювався  з  помірно  відновного  у  ювенільній  та  генеративній  фазах  (для 

гірчиці й ріпаку) до інтенсивно відновного у постгенеративній фазі. На відміну 

від  першого  року  проведення  досліджень,  посилення  відновних  процесів 

було  притаманним  також  і  на  тлі  післядії  кремнію  у  генеративній  та 

постгенеративній фазах (тільки для рижію).  

Така  динаміка  ОВП  може  бути  результатом  акумуляції  рухливих 

органічних  сполук.  Водночас,  значення  редокс  потенціалу  за  присутності 

кремнієвмісного добрива були вищими на 5‐21 мВ. 

Вміст  фенольних  сполук  у  ґрунті  з‐під  олійних  культур  за  післядії 

кремнієвмісного добрива був у 1,1‐1,3 рази нижчим порівняно з ділянками за 

його відсутності, особливо для рижію (рис. 8. 16).  

Найменша концентрація фенольних сполук була у контролі за межами 

дослідної ділянки впродовж всього вегетаційного періоду. Рівень фенольних 

сполук  підвищувався  впродовж  вегетації  в  усіх  варіантах  досліду,  але 

найбільшою мірою – за відсутності кремнієвмісного добрива, що, ймовірно, 

пов’язано  з  надходженням  екзометаболітів  у  прикореневе  середовище  та 

літньою  посухою,  внаслідок  якої  збільшилася  концентрація  ґрунтового 

розчину. 

Отже,  за  умов  післядії  кремнієвмісного  добрива  покращувалися 

алелопатичні  характеристики  прикореневого  середовища  і  посилювалася 

проліферація  клітин  рослин‐акцепторів,  спостерігалося  зниження  вмісту 

лабільних  фенольних  сполук  у  ґрунті  (особливо  для  рижію),  що,  в  цілому, 

може  сприяти  поліпшенню  фізіологічного  стану  досліджуваних  олійних 

культур. 
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Рис. 8. 16. Вміст фенольних сполук в ґрунті з‐під рижію (А), гірчиці (Б) та 

ріпаку (В), мг/кг: 1. – ґрунт + кремній; 2. – ґрунт без кремнію; 3. – контроль. 
Фази онтогенезу: І – ювенільна фаза; ІІ – генеративна; ІІІ – постгенеративна 
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мікроорганізмів. За потрапляння в ґрунтове середовищі зазначені біологічно 

активні речовини можуть суттєво змінювати видову структуру мікробіоценозу 

та активність ферментів, пов`язаних з колообігом біогенних елементів (Liu et 

al., 2024). Тому аналіз впливу післядії кремнієвмісного добрива на вміст цих 

сполук  у  ґрунті  дозволяє  з’ясувати  біохімічні  механізми  спостережених 

ефектів на біологічну активність та мікробіоценоз грунту.  

Сезонна динаміка вмісту сапонінів та тритерпеноїдів в ґрунті ризосфери 

капустяних  культур  характеризувалась  значним  зростанням  від  початку  до 

кінця  вегетації  (табл. 8. 19,  8. 20).  Очевидно  це  пов`язано  зі  зростанням 

видільної активності кореневих систем досліджених видів пропорційно росту 

їх біомаси. У контрольному ґрунті (за межами ділянок з посівами капустяних 

культур)  вміст  цих  біологічно  активних  сполук  був,  як  правило,  вищим 

порівняно  з  дослідженими  посівами  і  практично  не  змінювався  протягом 

вегетаційного сезону.   

Таблиця 8. 19 
Післядія внесення кремнієвмісних добрив на вміст  

сапонінів у ризосферному ґрунті (мг/г сух. маси) з‐під рижію, гірчиці та ріпаку 
(середнє арифметичне ± стандартна похибка) 

 

Культура  Варіант  
Фаза онтогенезу 

ювенільна  генеративна  постгенеративна 

Рижій 
К  1,20±0,02  1,98±0,02  3,56±0,03 

Добриво  0,41±0,01  0,85±0,03  2,04±0,02 

Гірчиця 
К  0,62±0,02  0,88±0,04  1,84±0,05 

Добриво  0,61±0,03  0,85±0,02  0,92±0,02 

Ріпак 
К  0,94±0,03  0,86±0,03  0,88±0,02 

Добриво  0,63±0,02  0,78±0,02  1,24±0,03 

Контроль  2,24±0,01  2,18±0,03  2,10±0,04 

Примітка: К – без внесення добрива 
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Таблиця 8. 20 
Післядія внесення кремнієвмісних добрив на вміст  

тритерпеноїдів у ризосферному ґрунті (мг/г сух. маси) з‐під рижію, гірчиці та 
ріпаку (середнє арифметичне ± стандартна похибка) 

 

Культура  Варіант 
Фаза онтогенезу 

ювенільна  генеративна  постгенеративна 

Рижій  К  0,42±0,01  0,37±0,02  1,88±0,02 

Рижій  Добриво  0,10±0,02  0,32±0,01  0,46±0,01 

Гірчиця  К  0,11±0,05  0,33±0,03  0,38±0,04 

Гірчиця  Добриво  0,13±0,03  0,31±0,04  0,38±0,05 

Ріпак  К  0,16±0,03  0,28±0,02  0,34±0,02 

Ріпак  Добриво  0,15±0,02  0,29±0,03  0,39±0,02 

Контроль   0,92±0,02  0,87±0,03  0,93±0,03 

Примітка: К – без внесення добрива.  
 

Внесення  кремнієвмісних  добрив  у  2023  році  суттєво  позначилось  на 

вмісті тритерпеноїдів та сапонінів у ґрунті ризосфери рижію, гірчиці та ріпаку 

у  наступному  2024  році.  При  цьому  найбільший  ефект  від  післядії  добрива 

спостерігали на  вміст  сапонінів  у  посівах рижию. Для цієї  культури,  а  також 

для  ріпаку  на  початку  їх  вегетації  у  варіантах  з  кремнієвмісним  добривом 

концентрація  сапонінів була  відповідно на 33%  та  76% нижчою порівняно  з 

контрольними  ділянками.  Протягом  вегетаційного  сезону  різниця  між 

удобреними  та  контрольними  ділянками  дещо  знижувалась.  А  в  ґрунті  під 

ріпаком  вміст  сапонінів  в  кінці  вегетаційного  сезону  на  тлі  післядії 

кремнієвмісного  добрива  досяг  на  40%  вищих  значень  порівняно  з 

контролем. 

Аналіз  вмісту  тритерпеноїдів  у  ґрунті  ризосфери  під  дослідженими 

культурними  рослинами  показав  подібну  до  сапонінів  сезонну  динаміку  з 

максимумами  в  кінці  вегетації.  Післядія  кремнієвмісного  добрива  на 
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концентрацію  тритерпеноїдів  у  ґрунті  ризосфери  залежала  від  виду 

культурної рослини та фази розвитку. На початку та в кінці вегетації ефект від 

внесення добрива був більшим ніж протягом генеративного періоду.  

У  посівах  рижію  післядія  кремнієвмісного  добрива  проявлялась  у 

зниженні  вмісту  тритерпеноїдів  у  ґрунті  ризосфери  на  20‐67%  залежно  від 

періоду вегетації. У посівах ріпаку подібну тенденцію спостерігали протягом 

ювенільної  фази  розвитку.  Протягом  генеративного  періоду  цей  показник 

достовірно  не  відрізнявся  між  дослідною  та  контрольною  ділянками,  а 

протягом  постгенеративного  періоду  вміст  тритерпеноїдів  на  контрольних 

ділянках був нижчим, ніж на тлі післядії кремнієвмісного добрива. У посівах 

гірчиці вміст тритерпеноїдів у ризосферному ґрунті достовірно не відрізнявся 

між дослідом та контролем. 

Підсумовуючи  наведені  вище  результати,  слід  відмітити  загальну 

тенденцію  до  зниження  концентрації  сапонінів  і  тритерпеноїдів  у  ґрунті 

ризосфери під дослідженими капустяними культурами протягом ювенільної 

та  генеративної  фаз  розвитку.  Важливим  наслідком  цього  є  зниження 

алелопатичної  активності  ґрунту  і  збільшення  біологічного  різноманіття 

ґрунтової мікрофлори. 

Таким чином, дослідження післядії кремнієвмісного добрива у посівах 

рижію,  гірчиці  та  ріпаку  в  2024  році  показало  збереження  тенденцій, 

виявлених у 2023 році (за внесення вищезазначеного добрива). Зокрема, це 

стимулювання  фотосинтетичної  продуктивності,  мінерального  живлення  та 

системної стійкості у досліджених капустяних культур. Акумуляція аморфного 

кремнезему  в  ґрунті  ризосфери  сприяє  стабілізації  важливих  макро‐  та 

мікроелементів  (зокрема  Ca,  Mg,  P,  Si  та  ін.)  та  іммобілізації  токсичних 

металів  (Mn,  Al,  Cd,  Cr,  Sr  та  ін.).  Крім  того  у  ґрунті  ризосфери  на  тлі 

кремнієвмісного  добрива  істотно  зростала  активність  лакази  та  вміст 

органічного  вуглецю.  Відповідно  знижувався  вміст  мінерального  вуглецю, 
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який  є  джерелом  емісії  вуглекислого  газу  в  атморсферу.  Післядія 

кремнієвмісного добрива  також позначилась на поліпшенні алелопатичного 

режиму прикореневого грунту, зниженні вмісту фітотоксичних алелопатичних 

речовин,  що  належать  до  групи  фенолів,  сапонінів  та  тритерпеноїдів. 

Покращення  алелопатичного  режиму  позитивно  вплинуло  на  чисельність  і 

біорізноманіття  агрономічно  корисних  мікроорганізмів,  зокрема 

актиноміцетів та аммоніфікаторів.  

Отримані  результати  свідчать  про  те,  що  на  другий  рік  після  внесення 

кремнієвмісного  добрива  ґрунтова  екосистема  під  дослідженими 

капустяними  культурами  характеризується  більшою  врівноваженістю  і 

спроможністю до самоорганізації відповідно до правила І. Пригожина.  

Отже,  отримані  результати  доводять  перспективність  застосування 

кремнієвмісних  добрив  для  управління  структурно‐функціональною 

організацією  ґрунтової  екосистеми  з  метою  підвищення  кількості  та  якості 

врожаю  капустяних  культур,  стійкості  посівів  до  несприятливих  кліматичних 

змін,  депонування  органічної  речовини  у  ґрунті  та  зниження  емісії 

парникових газів агроекосистемами. 
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ЗАКЛЮЧЕННЯ  
Вперше  в  Україні  оцінено  мобілізований  та  створений  генофонд 

досліджених  економічно‐важливих  олійних  рослин  (84  зразки)  і  відібрано 

генотипи (понад 20) для  їх маркер‐опосередкованої селекції, внаслідок чого 

виведено 4 високоадаптивні сорти (отримано авторські свідоцтва і патенти на 

сорти Руно та Ранок, а  також подано до Держаної реєстрації  сорти Лідер та 

Новинка).  Розроблено  науково‐методичні  засади  та  введено  в  культуру 

гірчицю  абіссинську  (капусту  кільоподібну)  і  рижій  озимий  як  нові 

перспективні олійні рослини. 

Установлено біолого‐господарські і морфолого‐технологічні властивості 

рослин  та  насіння  рижію  і  гірчиці  ефіопської  залежно  від  генотипових 

особливостей  у  період  технічної  стиглості.  Визначено,  що  висота  рослин  у 

різних  генотипів  рижію  змінюється  від  62,5  до  94,0 см,  кількість  бічних 

пагонів на рослині – 3,0‐12,6, кількість стручків на основному стеблі – 22‐44, 

на  бічних  пагонах  –  13‐29.  За  основними  морфометричними  показниками 

встановлена  суттєва  перевага  сортів  Ранок  та  Руно.  Найбільшу  фітомасу 

формували ф. 1 та ф. ЕОРЖЯФД, насіння – с. Ранок і ф. ЕОРЖЯФ‐1. Найбільша 

маса 1000 насінин була у сорту Руно та ф. ЕОРЖЯФ‐2. 

Визначено  біохімічний  склад  різних  біотипів  рослин.  Встановлено,  що 

найвищий вміст олії у насінні рижію становив 39,48 % (с. Руно). Виявлено, що 

за  жирнокислотним  складом  олії  для  різних  форм  рослин  Camelina  sativa 

характерним є високий вміст ліноленової  (від 31,4 до 35,6 %), лінолевої  (від 

19,8  до  24,6 %),  олеїнової  (від  11,9  до  18,5 %),  гондоїнової  (11‐ейкозенової) 

(від 9,5 до 12,9 %), пальмітинової (9,5–11,4 %) жирних кислот.  

Встановлено морфолого‐біологічні особливості різних генотипів рослин 

відібраних форм Brassica carinata. Виявлено, що в умовах інтродукції рослини 

проходять  всі  етапи  онтогенезу  за  один  вегетаційний  період  за  фазами 

розвитку  –  сходи,  перший  справжній  листок,  розетка,  стеблування, 
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бутонізація, квітування, плодоношення і дозрівання. Тривалість вегетаційного 

періоду рослин становить від 115 до 123 діб залежно від генотипу. 

Визначено  рівень  стійкості  рослин  Brassica  carinata  та  опрацьовано 

способи  підвищення  функціонування  фотосистеми  ІІ  і  покращення 

фізіологічних  процесів  –  за  умови  використання  генетичного  потенціалу 

рослин  та мікродобрив. Відібрано  генотипи рослин  із підвищеною стійкістю 

до  біотичних  і  абіотичних  факторів,  що  сприяє  поліпшенню  процесу 

акліматизації  та  селекції  та  відбору  високоадаптивних  генотипів  для 

введення в культуру. 

Виявлено  закономірності  накопичення  нутрієнтів  у  надземній  масі 

залежно  від  фази  розвитку  і  генотипових  особливостей  рослин  Brassica 

carinata.  Встановлено,  що  на  початку  вегетації  досліджувані  рослини 

характеризувались  інтенсивнішим  накопиченням  аскорбінової  кислоти, 

цукрів,  моноцукрів,  вільних  органічних  кислот,  золи,  протеїну  порівняно  з 

періодом  плодоношення.  Навпаки,  вміст  сухої  речовини  та  дубильних 

речовин збільшувались до періоду плодоношення.  

Визначено,  що  фітомаса  і  насіння  олійних  рослин  роду  Brassica  

характеризуються  високою  енергетичною  цінністю.  Надземна  маса  рослин 

різних генотипів Brassica carinata забезпечила вихід енергії від 3444 (BC NPF‐

8)  до  3994 ккал/кг  (BC  NPF‐1).  Найвищою  калорійністю  насіння 

характеризуються  генотипи BC NPF‐8  (5830 ккал/кг)  і BC SCF‐6  (5900 ккал/кг). 

У цілому енергетична цінність насіння зразків Brassica napus дещо перевищує 

(на  191‐431  ккал/кг)  Brassica  carinata  та  у  найкращих  генотипів  становить 

6186‐6331 ккал/кг.  

За  оцінкою  якісного  і  кількісного  складу  ліпідів  та  інших  нутрієнтів 

фітосировини  (56  зразків)  визначено  напрями  використання  генотипів.  У 

результаті  хроматографічного  аналізу  ліпідів  виявлено,  що  концентрація 

ерукової кислоти була найвищою серед інших жирних кислот і  становила 36‐
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45 %.  Наступними  за  вмістом  жирних  кислот  виявилися  лінолева, 

концентрація якої варіювала в межах 15,00‐18,84 %, ліноленова – 11‐13 % та 

олеїнова – 7,00‐9,57 %. З’ясовано, що Brassica carinata має відносно низький 

вміст олеїнової  кислоти, особливо у порівнянні  з еруковою. Для можливого 

використання олії в харчовій промисловості необхідна подальша селекційно‐

генетична робота для  створення нових форм рослин  з  підвищеним вмістом 

жирних кислот придатних для харчування.  

Визначено  вміст  22‐х  макро‐  та  мікроелементів  у  рослинній  сировині 

Brassica  carinata.  Показано  роль  окремих  елементів  у  ростовому  процесі 

рослин,  накопиченні  цукрів,  ліпідів,  вуглеводному  та  білковому  обміні  й 

метаболізмі, у підвищенні врожайності  та якості сировини  і стійкості рослин 

до дії екологічних факторів навколишнього середовища.  

Розроблено сучасні біо‐ та фітотехнологічні методи покращення росто‐

вих  і продуктивних показників відібраних форм рижію,  гірчиці ефіопської  та 

ріпаку і поліпшення біотрофних властивостей грунту – за умови використання 

оригінальних  кремнієвмісних добрив  та  високоефективних мікробіологічних 

препаратів.  

Установлено, що до завершення вегетації вплив кремнієвмісних добрив 

суттєво відобразився на всіх ростових та продуктивних показниках капустяних 

культур. Приріст висоти рослин становив від 3,7 % (рижій) до 16,2 % (гірчиця), 

кількість насінин у стручку збільшився від 11,3 % (рижій) до 42,7 % (гірчиця), 

маса  1000  насінин  від  3,3 %  (ріпак)  до  18,4 %  (рижій),  продуктивність 

надземної маси від 9,0 % (ріпак) до 18,8 % (гірчиця), насіння від 5,4 % (ріпак) 

до  16,7 %  (рижій),  що  доводить  високу  ефективність  застосування  кремніє‐

вмісних добрив.   

За  умови  застосування  кремнієвмісних  добрив  виявлено  суттєве 

підвищення вмісту кремнію в ґрунті, завдяки чому на тлі зростання органічної 

речовини формується кремнієва матриця, для якої притаманні інформаційно‐
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ресурсні  властивості.  З  одного  боку,  в  результаті  цього  забезпечується 

збалансованість  системи  ґрунт‐рослина‐ґрунт,  з  іншого  –  підвищується 

адаптивний  потенціал  рослин  до  абіотичних  і  біотичних  стрес‐факторів. 

Відбувається  зростання  концентрації  титану  та  цинку,  які  відповідають  за 

стійкість  рослин  до  фітопатогенів  і  температурних  коливань.  Підвищилися 

показники  брасиностероїдів  у  листках,  що  свідчить  про  підтримку  імунної 

системи  рослин  до  високої  температури,  посухи  та  хвороб.  Стимулювався 

синтез  хлорофілу  а  у  листках  рослин  впродовж  вегетаційного  періоду,  а 

хлорофілу b – у ювенільний період розвитку.  

Установлено  зростання  вмісту  вторинних  метаболітів  у  листках, 

зокрема  флаваноїдів,  антоціанів  і  танінів.  Доведено  позитивний  вплив 

кремнію на алелопатичний режим прикореневого середовища рижію, гірчиці 

та ріпаку впродовж вегетаційного періоду. Опрацьовано методи безвідходної 

утилізації побічної продукції.  

Доведено  перспективність  застосування  кремнієвмісних  добрив  для 

управління структурно‐функціональною організацією ґрунтової екосистеми з 

метою  підвищення  кількості  та  якості  врожаю  капустяних  культур,  стійкості 

посівів  до  несприятливих  кліматичних  змін,  депонування  органічної 

речовини у ґрунті та зниження емісії парникових газів агроекосистемами.  

Виявлено покращення показників  інтенсивності  індукції флуоресценції 

хлорофілу в трьох видів рослин родини Brassicaceae (Camelina sativa, Brassica 

carinata  та  Brassica  napus)  –  за  умови  впливу  кремнієвмісних  сполук. 

Встановлено,  що  найсильніший  вплив  добрива  простежувався  у  рослин 

Brassica napus.  

Дослідження післядії кремнієвмісного добрива у посівах рижію, гірчиці 

та ріпаку за період досліджень показало збереження тенденцій, виявлених у 

попередній  вегетаційний  період.  Встановлено  стимулювання  фотосинтетич‐

ної  продуктивності, мінерального живлення  та  системної  стійкості  у  дослід‐
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жених капустяних культур. Акумуляція аморфного кремнезему в ґрунті ризо‐

сфери сприяє стабілізації важливих макро‐ і мікроелементів (зокрема Ca, Mg, 

P, Si та ін.) та іммобілізації токсичних металів (Mn, Al, Cd, Cr, Sr та ін.).  

З’ясовано, що у ґрунті ризосфери на тлі кремнієвмісного добрива істот‐

но  зростала  активність  лакази  та  вміст  органічного  вуглецю.  Післядія  крем‐

нієвмісного  добрива  позначилась  на  поліпшенні  алелопатичного  режиму 

прикореневого  грунту,  зниженні  вмісту  фітотоксичних  алелопатичних  речо‐

вин, що належать до  групи фенолів,  сапонінів  та  тритерпеноїдів. Це  в  свою 

чергу  позитивно  вплинуло  на  чисельність  і  біорізноманіття  агрономічно 

корисних мікроорганізмів, зокрема актиноміцетів та аммоніфікаторів.  

Отримані вагомі наукові результати стали підґрунтям для комплексної 

оцінки  за  біолого‐морфологічними,  біохімічними  і  селекційно‐генетичними 

маркерами,  а  також  відбору  нових  селекційних  ліній  рослин  гірчиці 

ефіопської (9) і виведення оригінальних сортів рижію посівного (2); розробки 

практичних  рекомендацій  з  використання  фітосировини  малопоширених 

олійних  рослин.  Створено  рецептуру  хліба  пшеничного  з  оригінальною 

функціональною добавкою, де запропоновано використання борошна та олії 

рижію посівного сорту Перемога і гірчиці.  

Теоретично обґрунтовано  та практично реалізовано роботу  з  розробки 

методу поліпшення біотрофних властивостей  ґрунту, що сприяло покращен‐

ню  фізіолого‐біохімічних,  ростових  процесів  та  підвищенню  продуктивних 

показників  і  стійкості  олійних  рослин  за  використання  органо‐мінеральних 

кремнієвмісних  добрив.  Опрацьовано методи  безвідходної  утилізації  побіч‐

ної продукції. Розроблено оригінальні технології виробництва збалансованих 

харчових продуктів, технічних та фітозасобів на основі представників родини 

Brassicaceae. 
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Жирнокислотний склад олії насіння генотипів рослин рижію  
(окремі зразки ) 

 

Рис. 1. Хроматографічний профіль олії рижію № 1 

 

Рис. 2. Хроматографічний профіль олії рижію № 2 
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Додаток В 

Жирно кислотний склад олії насіння різних  
генотипів рослин гірчиці ефіопської (окремі зразки ) 

 

 

Рис. 1. Хроматографічний профіль олії гірчиці ефіопської № 1 
 

 
Рис. 2. Хроматографічний профіль олії гірчиці ефіопської № 2 
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Додаток Е 

Патент на корисну модель «Спосіб лабораторного випікання хліба 
пшеничного з рижієм посівним» 

Корисна  модель  відноситься  до  галузі  сільського  господарства  та 
харчової промисловості. 

Мета  розробки  –  розширення  асортименту  вітчизняних  хлібобулочних 
виробів за рахунок використання helsi добавок у рецептурі.  

Суть  розробки  ґрунтується  на  зменшенні  в  рецептурі  випікання  хліба 
деякої кількості борошна пшеничного та додавання до рецептури борошна та 
олії рижію посівного (Camelina sativa L.) сорту Перемога. 

Борошно  рижію  посівного  виготовляється  шляхом  подрібнення  макухи 
(знежирене  насіння),  що  залишається  після  вилучення  олії  з  насіння  рижію 
методом  холодного  пресування  (за  температури  до  40°С).  Попередньо 
макуху подрібнюють за допомогою млинка до розміру частинок 30‐40 мкм і 
перемішують для взяття рецептурної наважки.  

Затим  готують  тісто:  беруть  90 г  борошна  пшеничного  70%  виходу 
вищого сорту (за вологості 14%) та 10 г борошна рижію посівного, с. Перемога 
(розмір  частинок  30‐40  мкм),  дріжджі  пресовані,  сіль  кухонна,  цукор‐пісок, 
олія  рижієва  –  по  1,5%  кожного  від  маси  суміші  борошна  пшеничного  та 
борошна  рижію,  вода  питна  –  згідно  водопоглинальної  здатності  борошна, 
що  за  показником фаринографа  відповідає  консистенції  тіста  500 од. ф.  або 
50‐55%.  Після  приготування  тіста  його  піддають  бродінню  –  ставлять  у 
термостат  на  150‐180 хв  за  температури  28‐32°С,  потім  тісто  обминають, 
формують,  уміщують  у  форму  та  знову  ставлять  у  термостат.  Кінець 
розстоювання  тіста  визначають  органолептично.  Випікають  хліб  зі 
зволоженням пекарної камери за температури 200‐220°С упродовж 15‐20 хв. 

Таким  чином,  дана  рецептура  включає  три  етапи:  оброблювання  тіста, 
розстоювання та випікання хліба.  

Для досягнення максимальних органолептичних і смакових показників в 
експерименті використано різну кількість борошна рижію посівного – 3, 5, 10 
та 15%. За підсумком роботи комісії з оцінювання, найкращим був зразок  із 
вмістом  10%  борошна  рижію.  Власне  ця  рецептура  і  була  визнаною 
найкращою та рекомендована до патентування. 
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Кисіль А.А. Спосіб лабораторного випікання хліба пшеничного з рижієм 
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Зразки лабораторного хліба пшеничного з додаванням  
різної частки борошна рижію посівного (Camelina sativa L.) 
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